amun-code/src/interpolations.F90

4344 lines
118 KiB
Fortran
Raw Normal View History

!!******************************************************************************
!!
!! This file is part of the AMUN source code, a program to perform
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2015 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by
!! the Free Software Foundation, either version 3 of the License, or
!! (at your option) any later version.
!!
!! This program is distributed in the hope that it will be useful,
!! but WITHOUT ANY WARRANTY; without even the implied warranty of
!! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
!! GNU General Public License for more details.
!!
!! You should have received a copy of the GNU General Public License
!! along with this program. If not, see <http://www.gnu.org/licenses/>.
!!
!!******************************************************************************
!!
!! module: INTERPOLATIONS
!!
!! This module provides subroutines to interpolate variables and reconstruct
!! the Riemann states.
!!
!!
!!******************************************************************************
!
module interpolations
#ifdef PROFILE
! import external subroutines
!
use timers, only : set_timer, start_timer, stop_timer
#endif /* PROFILE */
! module variables are not implicit by default
!
implicit none
#ifdef PROFILE
! timer indices
!
integer , save :: imi, imr, imf, imc
#endif /* PROFILE */
! pointers to the reconstruction and limiter procedures
!
procedure(interfaces_tvd) , pointer, save :: interfaces => null()
procedure(reconstruct) , pointer, save :: reconstruct_states => null()
procedure(limiter_zero) , pointer, save :: limiter_tvd => null()
procedure(limiter_zero) , pointer, save :: limiter_prol => null()
procedure(limiter_zero) , pointer, save :: limiter_clip => null()
! module parameters
!
real(kind=8), save :: eps = epsilon(1.0d+00)
real(kind=8), save :: rad = 0.5d+00
! monotonicity preserving reconstruction coefficients
!
real(kind=8), save :: kappa = 1.0d+00
real(kind=8), save :: kbeta = 1.0d+00
! number of ghost zones (required for compact schemes)
!
integer , save :: ng = 2
! number of cells used in the Gaussian process reconstruction
!
integer , save :: ngp = 5
! normal distribution width in the Gaussian process reconstruction
!
real(kind=8), save :: sgp = 1.0d+01
! Gaussian process reconstruction coefficients vector
!
real(kind=8), dimension(:) , allocatable, save :: cgp
! flags for reconstruction corrections
!
logical , save :: positivity = .false.
logical , save :: clip = .false.
! by default everything is private
!
private
! declare public subroutines
!
public :: initialize_interpolations, finalize_interpolations
public :: interfaces, reconstruct, limiter_prol
public :: fix_positivity
!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!
contains
!
!===============================================================================
!
! subroutine INITIALIZE_INTERPOLATIONS:
! ------------------------------------
!
! Subroutine initializes the interpolation module by reading the module
! parameters.
!
!
!===============================================================================
!
subroutine initialize_interpolations(verbose, iret)
! include external procedures
!
use error , only : print_warning
use parameters, only : get_parameter_string, get_parameter_integer &
, get_parameter_real
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
logical, intent(in) :: verbose
integer, intent(inout) :: iret
! local variables
!
character(len=255) :: sreconstruction = "tvd"
character(len=255) :: tlimiter = "mm"
character(len=255) :: plimiter = "mm"
character(len=255) :: climiter = "mm"
character(len=255) :: positivity_fix = "off"
character(len=255) :: clip_extrema = "off"
character(len=255) :: name_rec = ""
character(len=255) :: name_tlim = ""
character(len=255) :: name_plim = ""
character(len=255) :: name_clim = ""
character(len= 16) :: stmp
real(kind=8) :: cfl = 0.5d+00
!
!-------------------------------------------------------------------------------
!
#ifdef PROFILE
! set timer descriptions
!
call set_timer('interpolations:: initialization', imi)
call set_timer('interpolations:: reconstruction', imr)
call set_timer('interpolations:: fix positivity', imf)
call set_timer('interpolations:: clip extrema' , imc)
! start accounting time for module initialization/finalization
!
call start_timer(imi)
#endif /* PROFILE */
! obtain the user defined interpolation methods and coefficients
!
call get_parameter_string ("reconstruction" , sreconstruction)
call get_parameter_string ("limiter" , tlimiter )
call get_parameter_string ("fix_positivity" , positivity_fix )
call get_parameter_string ("clip_extrema" , clip_extrema )
call get_parameter_string ("extrema_limiter" , climiter )
call get_parameter_string ("prolongation_limiter", plimiter )
call get_parameter_integer("nghosts" , ng )
call get_parameter_integer("ngp" , ngp )
call get_parameter_real ("sgp" , sgp )
call get_parameter_real ("eps" , eps )
call get_parameter_real ("limo3_rad" , rad )
call get_parameter_real ("kappa" , kappa )
call get_parameter_real ("kbeta" , kbeta )
call get_parameter_real ("cfl" , cfl )
! calculate κ = (1 - ν) / ν
!
kappa = min(kappa, (1.0d+00 - cfl) / cfl)
! select the reconstruction method
!
select case(trim(sreconstruction))
case ("tvd", "TVD")
name_rec = "2nd order TVD"
interfaces => interfaces_tvd
reconstruct_states => reconstruct_tvd
if (verbose .and. ng < 2) &
call print_warning("interpolations:initialize_interpolation" &
, "Increase the number of ghost cells (at least 2).")
case ("weno3", "WENO3")
name_rec = "3rd order WENO"
interfaces => interfaces_dir
reconstruct_states => reconstruct_weno3
if (verbose .and. ng < 2) &
call print_warning("interpolations:initialize_interpolation" &
, "Increase the number of ghost cells (at least 2).")
case ("limo3", "LIMO3", "LimO3")
name_rec = "3rd order logarithmic limited"
interfaces => interfaces_dir
reconstruct_states => reconstruct_limo3
if (verbose .and. ng < 2) &
call print_warning("interpolations:initialize_interpolation" &
, "Increase the number of ghost cells (at least 2).")
eps = max(1.0d-12, eps)
case ("weno5z", "weno5-z", "WENO5Z", "WENO5-Z")
name_rec = "5th order WENO-Z (Borges et al. 2008)"
interfaces => interfaces_dir
reconstruct_states => reconstruct_weno5z
if (verbose .and. ng < 4) &
call print_warning("interpolations:initialize_interpolation" &
, "Increase the number of ghost cells (at least 4).")
case ("weno5yc", "weno5-yc", "WENO5YC", "WENO5-YC")
name_rec = "5th order WENO-YC (Yamaleev & Carpenter 2009)"
interfaces => interfaces_dir
reconstruct_states => reconstruct_weno5yc
if (verbose .and. ng < 4) &
call print_warning("interpolations:initialize_interpolation" &
, "Increase the number of ghost cells (at least 4).")
case ("weno5ns", "weno5-ns", "WENO5NS", "WENO5-NS")
name_rec = "5th order WENO-NS (Ha et al. 2013)"
interfaces => interfaces_dir
reconstruct_states => reconstruct_weno5ns
if (verbose .and. ng < 4) &
call print_warning("interpolations:initialize_interpolation" &
, "Increase the number of ghost cells (at least 4).")
case ("crweno5z", "crweno5-z", "CRWENO5Z", "CRWENO5-Z")
name_rec = "5th order Compact WENO-Z"
interfaces => interfaces_dir
reconstruct_states => reconstruct_crweno5z
if (verbose .and. ng < 4) &
call print_warning("interpolations:initialize_interpolation" &
, "Increase the number of ghost cells (at least 4).")
case ("crweno5yc", "crweno5-yc", "CRWENO5YC", "CRWENO5-YC")
name_rec = "5th order Compact WENO-YC"
interfaces => interfaces_dir
reconstruct_states => reconstruct_crweno5yc
if (verbose .and. ng < 4) &
call print_warning("interpolations:initialize_interpolation" &
, "Increase the number of ghost cells (at least 4).")
case ("crweno5ns", "crweno5-ns", "CRWENO5NS", "CRWENO5-NS")
name_rec = "5th order Compact WENO-NS"
interfaces => interfaces_dir
reconstruct_states => reconstruct_crweno5ns
if (verbose .and. ng < 4) &
call print_warning("interpolations:initialize_interpolation" &
, "Increase the number of ghost cells (at least 4).")
case ("mp5", "MP5")
name_rec = "5th order Monotonicity Preserving"
interfaces => interfaces_dir
reconstruct_states => reconstruct_mp5
if (verbose .and. ng < 4) &
call print_warning("interpolations:initialize_interpolation" &
, "Increase the number of ghost cells (at least 4).")
case ("crmp5", "CRMP5")
name_rec = "5th order Compact Monotonicity Preserving"
interfaces => interfaces_dir
reconstruct_states => reconstruct_crmp5
if (verbose .and. ng < 4) &
call print_warning("interpolations:initialize_interpolation" &
, "Increase the number of ghost cells (at least 4).")
case ("crmp5l", "crmp5ld", "CRMP5L", "CRMP5LD")
name_rec = "5th order Low-Dissipation Compact Monotonicity Preserving"
interfaces => interfaces_dir
reconstruct_states => reconstruct_crmp5ld
if (verbose .and. ng < 4) &
call print_warning("interpolations:initialize_interpolation" &
, "Increase the number of ghost cells (at least 4).")
case ("gp", "GP")
write(stmp, '(f16.1)') sgp
write(name_rec, '("Gaussian Process (",i1,"-point, δ=",a,")")') ngp &
, trim(adjustl(stmp))
! allocate the Gaussian process reconstruction matrix and position vector
!
allocate(cgp(ngp))
! prepare matrix coefficients
!
call prepare_gp()
interfaces => interfaces_dir
reconstruct_states => reconstruct_gp
if (verbose .and. 2 * ng <= ngp - 1) &
call print_warning("interpolations:initialize_interpolation" &
, "Increase the number of ghost cells (at least (ngp+1)/2).")
if (verbose .and. mod(ngp,2) == 0) &
call print_warning("interpolations:initialize_interpolation" &
, "The parameter ngp has to be integer with odd value.")
case default
if (verbose) then
write (*,"(1x,a)") "The selected reconstruction method is not " // &
"implemented: " // trim(sreconstruction)
stop
end if
end select
! select the TVD limiter
!
select case(trim(tlimiter))
case ("mm", "minmod")
name_tlim = "minmod"
limiter_tvd => limiter_minmod
case ("mc", "monotonized_central")
name_tlim = "monotonized central"
limiter_tvd => limiter_monotonized_central
case ("sb", "superbee")
name_tlim = "superbee"
limiter_tvd => limiter_superbee
case ("vl", "vanleer")
name_tlim = "van Leer"
limiter_tvd => limiter_vanleer
case ("va", "vanalbada")
name_tlim = "van Albada"
limiter_tvd => limiter_vanalbada
case default
name_tlim = "zero derivative"
limiter_tvd => limiter_zero
end select
! select the prolongation limiter
!
select case(trim(plimiter))
case ("mm", "minmod")
name_plim = "minmod"
limiter_prol => limiter_minmod
case ("mc", "monotonized_central")
name_plim = "monotonized central"
limiter_prol => limiter_monotonized_central
case ("sb", "superbee")
name_plim = "superbee"
limiter_prol => limiter_superbee
case ("vl", "vanleer")
name_plim = "van Leer"
limiter_prol => limiter_vanleer
case default
name_plim = "zero derivative"
limiter_prol => limiter_zero
end select
! select the clipping limiter
!
select case(trim(climiter))
case ("mm", "minmod")
name_clim = "minmod"
limiter_clip => limiter_minmod
case ("mc", "monotonized_central")
name_clim = "monotonized central"
limiter_clip => limiter_monotonized_central
case ("sb", "superbee")
name_clim = "superbee"
limiter_clip => limiter_superbee
case ("vl", "vanleer")
name_clim = "van Leer"
limiter_clip => limiter_vanleer
case default
name_clim = "zero derivative"
limiter_clip => limiter_zero
end select
! check additional reconstruction limiting
!
select case(trim(positivity_fix))
case ("on", "ON", "t", "T", "y", "Y", "true", "TRUE", "yes", "YES")
positivity = .true.
case default
positivity = .false.
end select
select case(trim(clip_extrema))
case ("on", "ON", "t", "T", "y", "Y", "true", "TRUE", "yes", "YES")
clip = .true.
case default
clip = .false.
end select
! print informations about the reconstruction methods and parameters
!
if (verbose) then
write (*,"(4x,a14, 9x,'=',1x,a)") "reconstruction" , trim(name_rec)
write (*,"(4x,a11,12x,'=',1x,a)") "TVD limiter" , trim(name_tlim)
write (*,"(4x,a20, 3x,'=',1x,a)") "prolongation limiter", trim(name_plim)
write (*,"(4x,a14, 9x,'=',1x,a)") "fix positivity" , trim(positivity_fix)
write (*,"(4x,a12,11x,'=',1x,a)") "clip extrema" , trim(clip_extrema)
if (clip) then
write (*,"(4x,a15,8x,'=',1x,a)") "extrema limiter", trim(name_clim)
end if
end if
#ifdef PROFILE
! stop accounting time for module initialization/finalization
!
call stop_timer(imi)
#endif /* PROFILE */
!-------------------------------------------------------------------------------
!
end subroutine initialize_interpolations
!
!===============================================================================
!
! subroutine FINALIZE_INTERPOLATIONS:
! ----------------------------------
!
! Subroutine finalizes the interpolation module by releasing all memory used
! by its module variables.
!
!
!===============================================================================
!
subroutine finalize_interpolations(iret)
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
integer, intent(inout) :: iret
!
!-------------------------------------------------------------------------------
!
#ifdef PROFILE
! start accounting time for module initialization/finalization
!
call start_timer(imi)
#endif /* PROFILE */
! deallocate Gaussian process reconstruction coefficient vector if used
!
if (allocated(cgp)) deallocate(cgp)
! release the procedure pointers
!
nullify(reconstruct_states)
nullify(limiter_tvd)
nullify(limiter_prol)
nullify(limiter_clip)
#ifdef PROFILE
! stop accounting time for module initialization/finalization
!
call stop_timer(imi)
#endif /* PROFILE */
!-------------------------------------------------------------------------------
!
end subroutine finalize_interpolations
!
!===============================================================================
!
! subroutine INTERFACES_TVD:
! -------------------------
!
! Subroutine reconstructs both side interfaces of variable using TVD methods.
!
! Arguments:
!
! positive - the variable positivity flag;
! h - the spatial step;
! q - the variable array;
! qi - the array of reconstructed interfaces (2 in each direction);
!
!===============================================================================
!
subroutine interfaces_tvd(positive, h, q, qi)
! include external procedures
!
use coordinates , only : im , jm , km
use coordinates , only : ib , jb , kb , ie , je , ke
use coordinates , only : ibl, jbl, kbl, ieu, jeu, keu
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
logical , intent(in) :: positive
real(kind=8), dimension(NDIMS) , intent(in) :: h
real(kind=8), dimension(im,jm,km) , intent(in) :: q
real(kind=8), dimension(im,jm,km,2,NDIMS), intent(out) :: qi
! local variables
!
integer :: i, im1, ip1
integer :: j, jm1, jp1
integer :: k, km1, kp1
real(kind=8), dimension(NDIMS) :: dql, dqr, dq
!
!-------------------------------------------------------------------------------
!
! copy ghost zones
!
do k = 1, NDIMS
do j = 1, 2
qi( 1:ib, 1:jm, 1:km,j,k) = q( 1:ib, 1:jm, 1:km)
qi(ie:im, 1:jm, 1:km,j,k) = q(ie:im, 1:jm, 1:km)
qi(ib:ie, 1:jb, 1:km,j,k) = q(ib:ie, 1:jb, 1:km)
qi(ib:ie,je:jm, 1:km,j,k) = q(ib:ie,je:jm, 1:km)
#if NDIMS == 3
qi(ib:ie,jb:je, 1:kb,j,k) = q(ib:ie,jb:je, 1:kb)
qi(ib:ie,jb:je,ke:km,j,k) = q(ib:ie,jb:je,ke:km)
#endif /* NDIMS == 3 */
end do
end do
! interpolate interfaces
!
do k = kbl, keu
#if NDIMS == 3
km1 = k - 1
kp1 = k + 1
#endif /* NDIMS == 3 */
do j = jbl, jeu
jm1 = j - 1
jp1 = j + 1
do i = ibl, ieu
im1 = i - 1
ip1 = i + 1
! calculate the TVD derivatives
!
dql(1) = q(i ,j,k) - q(im1,j,k)
dqr(1) = q(ip1,j,k) - q(i ,j,k)
dq (1) = limiter_tvd(0.5d+00, dql(1), dqr(1))
dql(2) = q(i,j ,k) - q(i,jm1,k)
dqr(2) = q(i,jp1,k) - q(i,j ,k)
dq (2) = limiter_tvd(0.5d+00, dql(2), dqr(2))
#if NDIMS == 3
dql(3) = q(i,j,k ) - q(i,j,km1)
dqr(3) = q(i,j,kp1) - q(i,j,k )
dq (3) = limiter_tvd(0.5d+00, dql(3), dqr(3))
#endif /* NDIMS == 3 */
! limit the derivatives if they produce negative interpolation for positive
! variables
!
if (positive) then
do while (q(i,j,k) <= sum(abs(dq(1:NDIMS))))
dq(:) = 0.5d+00 * dq(:)
end do
end if
! interpolate states
!
qi(i ,j,k,1,1) = q(i,j,k) + dq(1)
qi(im1,j,k,2,1) = q(i,j,k) - dq(1)
qi(i,j ,k,1,2) = q(i,j,k) + dq(2)
qi(i,jm1,k,2,2) = q(i,j,k) - dq(2)
#if NDIMS == 3
qi(i,j,k ,1,3) = q(i,j,k) + dq(3)
qi(i,j,km1,2,3) = q(i,j,k) - dq(3)
#endif /* NDIMS == 3 */
end do ! i = ibl, ieu
end do ! j = jbl, jeu
end do ! k = kbl, keu
!-------------------------------------------------------------------------------
!
end subroutine interfaces_tvd
!
!===============================================================================
!
! subroutine INTERFACES_DIR:
! -------------------------
!
! Subroutine reconstructs both side interfaces of variable separately
! along each direction.
!
! Arguments:
!
! positive - the variable positivity flag;
! h - the spatial step;
! q - the variable array;
! qi - the array of reconstructed interfaces (2 in each direction);
!
!===============================================================================
!
subroutine interfaces_dir(positive, h, q, qi)
! include external procedures
!
use coordinates , only : im , jm , km
use coordinates , only : ib , jb , kb , ie , je , ke
use coordinates , only : ibl, jbl, kbl, ieu, jeu, keu
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
logical , intent(in) :: positive
real(kind=8), dimension(NDIMS) , intent(in) :: h
real(kind=8), dimension(im,jm,km) , intent(in) :: q
real(kind=8), dimension(im,jm,km,2,NDIMS), intent(out) :: qi
! local variables
!
integer :: i, j, k
!
!-------------------------------------------------------------------------------
!
! copy ghost zones
!
do k = 1, NDIMS
do j = 1, 2
qi( 1:ib, 1:jm, 1:km,j,k) = q( 1:ib, 1:jm, 1:km)
qi(ie:im, 1:jm, 1:km,j,k) = q(ie:im, 1:jm, 1:km)
qi(ib:ie, 1:jb, 1:km,j,k) = q(ib:ie, 1:jb, 1:km)
qi(ib:ie,je:jm, 1:km,j,k) = q(ib:ie,je:jm, 1:km)
#if NDIMS == 3
qi(ib:ie,jb:je, 1:kb,j,k) = q(ib:ie,jb:je, 1:kb)
qi(ib:ie,jb:je,ke:km,j,k) = q(ib:ie,jb:je,ke:km)
#endif /* NDIMS == 3 */
end do
end do
! interpolate interfaces
!
do k = kbl, keu
do j = jbl, jeu
call reconstruct(im, h(1), q(1:im,j,k) &
, qi(1:im,j,k,1,1), qi(1:im,j,k,2,1))
end do ! j = jbl, jeu
do i = ibl, ieu
call reconstruct(jm, h(2), q(i,1:jm,k) &
, qi(i,1:jm,k,1,2), qi(i,1:jm,k,2,2))
end do ! i = ibl, ieu
end do ! k = kbl, keu
#if NDIMS == 3
do j = jbl, jeu
do i = ibl, ieu
call reconstruct(km, h(3), q(i,j,1:km) &
, qi(i,j,1:km,1,3), qi(i,j,1:km,2,3))
end do ! i = ibl, ieu
end do ! j = jbl, jeu
#endif /* NDIMS == 3 */
! make sure the interface states are positive for positive variables
!
if (positive) then
do k = kbl, keu
do j = jbl, jeu
call fix_positivity(im, q(1:im,j,k) &
, qi(1:im,j,k,1,1), qi(1:im,j,k,2,1))
end do ! j = jbl, jeu
do i = ibl, ieu
call fix_positivity(jm, q(i,1:jm,k) &
, qi(i,1:jm,k,1,2), qi(i,1:jm,k,2,2))
end do ! i = ibl, ieu
end do ! k = kbl, keu
#if NDIMS == 3
do j = jbl, jeu
do i = ibl, ieu
call fix_positivity(km, q(i,j,1:km) &
, qi(i,j,1:km,1,3), qi(i,j,1:km,2,3))
end do ! i = ibl, ieu
end do ! j = jbl, jeu
#endif /* NDIMS == 3 */
end if
!-------------------------------------------------------------------------------
!
end subroutine interfaces_dir
!
!===============================================================================
!
! subroutine RECONSTRUCT:
! ----------------------
!
! Subroutine calls a reconstruction procedure, depending on the compilation
! flag SPACE, in order to interpolate the left and right states from their
! cell integrals. These states are required by any approximate Riemann
! solver.
!
! Arguments:
!
! n - the length of the input vector;
! h - the spatial step; this is required for some reconstruction methods;
! f - the input vector of cell averaged values;
! fl - the left side state reconstructed for location (i+1/2);
! fr - the right side state reconstructed for location (i+1/2);
!
!===============================================================================
!
subroutine reconstruct(n, h, f, fl, fr)
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
integer , intent(in) :: n
real(kind=8) , intent(in) :: h
real(kind=8), dimension(n), intent(in) :: f
real(kind=8), dimension(n), intent(out) :: fl, fr
!
!-------------------------------------------------------------------------------
!
#ifdef PROFILE
! start accounting time for reconstruction
!
call start_timer(imr)
#endif /* PROFILE */
! reconstruct the states using the selected subroutine
!
call reconstruct_states(n, h, f(:), fl(:), fr(:))
! correct the reconstruction near extrema by clipping them in order to improve
! the stability of scheme
!
if (clip) call clip_extrema(n, f(:), fl(:), fr(:))
#ifdef PROFILE
! stop accounting time for reconstruction
!
call stop_timer(imr)
#endif /* PROFILE */
!-------------------------------------------------------------------------------
!
end subroutine reconstruct
!
!===============================================================================
!
! subroutine RECONSTRUCT_TVD:
! --------------------------
!
! Subroutine reconstructs the interface states using the second order TVD
! method with a selected limiter.
!
! Arguments are described in subroutine reconstruct().
!
!
!===============================================================================
!
subroutine reconstruct_tvd(n, h, f, fl, fr)
2011-05-28 09:49:35 -03:00
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
integer , intent(in) :: n
real(kind=8) , intent(in) :: h
real(kind=8), dimension(n), intent(in) :: f
real(kind=8), dimension(n), intent(out) :: fl, fr
! local variables
!
integer :: i, im1, ip1
real(kind=8) :: df, dfl, dfr
!
!-------------------------------------------------------------------------------
!
! calculate the left- and right-side interface interpolations
!
do i = 2, n - 1
! calculate left and right indices
!
im1 = i - 1
ip1 = i + 1
! calculate left and right side derivatives
!
dfl = f(i ) - f(im1)
dfr = f(ip1) - f(i )
! obtain the TVD limited derivative
!
df = limiter_tvd(0.5d+00, dfl, dfr)
! update the left and right-side interpolation states
!
fl(i ) = f(i) + df
fr(im1) = f(i) - df
end do ! i = 2, n - 1
! update the interpolation of the first and last points
!
i = n - 1
fl(1) = 0.5d+00 * (f(1) + f(2))
fr(i) = 0.5d+00 * (f(i) + f(n))
fl(n) = f(n)
fr(n) = f(n)
!-------------------------------------------------------------------------------
!
end subroutine reconstruct_tvd
!
!===============================================================================
!
! subroutine RECONSTRUCT_WENO3:
! ----------------------------
!
! Subroutine reconstructs the interface states using the third order
! Weighted Essentially Non-Oscillatory (WENO) method.
!
! Arguments are described in subroutine reconstruct().
!
! References:
!
! [1] Yamaleev & Carpenter, 2009, J. Comput. Phys., 228, 3025
!
!===============================================================================
!
subroutine reconstruct_weno3(n, h, f, fl, fr)
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
integer , intent(in) :: n
real(kind=8) , intent(in) :: h
real(kind=8), dimension(n), intent(in) :: f
real(kind=8), dimension(n), intent(out) :: fl, fr
! local variables
!
integer :: i, im1, ip1
real(kind=8) :: bp, bm, ap, am, wp, wm, ww
real(kind=8) :: dfl, dfr, df, fp, fm, fc, h2
! selection weights
!
real(kind=8), parameter :: dp = 2.0d+00 / 3.0d+00, dm = 1.0d+00 / 3.0d+00
!
!-------------------------------------------------------------------------------
!
! prepare common parameters
!
h2 = h * h
! iterate along the vector
!
do i = 2, n - 1
! prepare neighbour indices
!
im1 = i - 1
ip1 = i + 1
! calculate the left and right derivatives
!
dfl = f(i ) - f(im1)
dfr = f(ip1) - f(i )
! calculate coefficient omega
!
ww = (dfr - dfl)**2
! calculate corresponding betas
!
bp = dfr * dfr
bm = dfl * dfl
! calculate improved alphas
!
ap = 1.0d+00 + ww / (bp + h2)
am = 1.0d+00 + ww / (bm + h2)
! calculate weights
!
wp = dp * ap
wm = dm * am
ww = 2.0d+00 * (wp + wm)
! calculate central interpolation
!
fp = f(i ) + f(ip1)
! calculate left side interpolation
!
fm = - f(im1) + 3.0d+00 * f(i )
! calculate the left state
!
fl( i ) = (wp * fp + wm * fm) / ww
! calculate weights
!
wp = dp * am
wm = dm * ap
ww = 2.0d+00 * (wp + wm)
! calculate central interpolation
!
fp = f(i ) + f(im1)
! calculate right side interpolation
!
fm = - f(ip1) + 3.0d+00 * f(i )
! calculate the right state
!
fr(im1) = (wp * fp + wm * fm) / ww
end do ! i = 2, n - 1
! update the interpolation of the first and last points
!
i = n - 1
fl(1) = 0.5d+00 * (f(1) + f(2))
fr(i) = 0.5d+00 * (f(i) + f(n))
fl(n) = f(n)
fr(n) = f(n)
!-------------------------------------------------------------------------------
!
end subroutine reconstruct_weno3
!
!===============================================================================
!
! subroutine RECONSTRUCT_LIMO3:
! ----------------------------
!
! Subroutine reconstructs the interface states using the third order method
! with a limiter function LimO3.
!
! Arguments are described in subroutine reconstruct().
!
! References:
!
! [1] Cada, M. & Torrilhon, M.,
! "Compact third-order limiter functions for finite volume methods",
! Journal of Computational Physics, 2009, 228, 4118-4145
! [2] Mignone, A., Tzeferacos, P., & Bodo, G.,
! "High-order conservative finite divergence GLM-MHD schemes for
! cell-centered MHD",
! Journal of Computational Physics, 2010, 229, 5896-5920
!
!===============================================================================
!
subroutine reconstruct_limo3(n, h, f, fl, fr)
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
integer , intent(in) :: n
real(kind=8) , intent(in) :: h
real(kind=8), dimension(n), intent(in) :: f
real(kind=8), dimension(n), intent(out) :: fl, fr
! local variables
!
integer :: i, im1, ip1
real(kind=8) :: dfl, dfr
real(kind=8) :: th, et, f1, f2, xl, xi, rdx, rdx2
!
!-------------------------------------------------------------------------------
!
! prepare parameters
!
rdx = rad * h
rdx2 = rdx * rdx
! iterate over positions and interpolate states
!
do i = 2, n - 1
! prepare neighbour indices
!
im1 = i - 1
ip1 = i + 1
! prepare left and right differences
!
dfl = f(i ) - f(im1)
dfr = f(ip1) - f(i )
! calculate the indicator function (eq. 3.17 in [1])
!
et = (dfl * dfl + dfr * dfr) / rdx2
! the switching function (embedded in eq. 3.22 in [1], eq. 32 in [2])
!
xi = max(0.0d+00, 0.5d+00 * min(2.0d+00, 1.0d+00 + (et - 1.0d+00) / eps))
xl = 1.0d+00 - xi
! calculate values at i + ½
!
if (abs(dfr) > eps) then
! calculate the slope ratio (eq. 2.8 in [1])
!
th = dfl / dfr
! calculate the quadratic reconstruction (eq. 3.8 in [1], divided by 2)
!
f1 = (2.0d+00 + th) / 6.0d+00
! calculate the third order limiter (eq. 3.13 in [1], cofficients divided by 2)
!
if (th >= 0.0d+00) then
f2 = max(0.0d+00, min(f1, th, 0.8d+00))
else
f2 = max(0.0d+00, min(f1, - 0.25d+00 * th))
end if
! interpolate the left state (eq. 3.5 in [1], eq. 30 in [2])
!
fl(i) = f(i) + dfr * (xl * f1 + xi * f2)
else
fl(i) = f(i)
end if
! calculate values at i - ½
!
if (abs(dfl) > eps) then
! calculate the slope ratio (eq. 2.8 in [1])
!
th = dfr / dfl
! calculate the quadratic reconstruction (eq. 3.8 in [1], divided by 2)
!
f1 = (2.0d+00 + th) / 6.0d+00
! calculate the third order limiter (eq. 3.13 in [1], cofficients divided by 2)
!
if (th >= 0.0d+00) then
f2 = max(0.0d+00, min(f1, th, 0.8d+00))
else
f2 = max(0.0d+00, min(f1, - 0.25d+00 * th))
end if
! interpolate the right state (eq. 3.5 in [1], eq. 30 in [2])
!
fr(im1) = f(i) - dfl * (xl * f1 + xi * f2)
else
fr(im1) = f(i)
end if
end do ! i = 2, n - 1
! update the interpolation of the first and last points
!
i = n - 1
fl(1) = 0.5d+00 * (f(1) + f(2))
fr(i) = 0.5d+00 * (f(i) + f(n))
fl(n) = f(n)
fr(n) = f(n)
!-------------------------------------------------------------------------------
!
end subroutine reconstruct_limo3
!
!===============================================================================
!
! subroutine RECONSTRUCT_WENO5Z:
! -----------------------------
!
! Subroutine reconstructs the interface states using the fifth order
! Explicit Weighted Essentially Non-Oscillatory (WENO5) method with
! stencil weights by Borges et al. (2008).
!
! Arguments are described in subroutine reconstruct().
!
! References:
!
! [1] Borges, R., Carmona, M., Costa, B., & Don, W.-S.,
! "An improved weighted essentially non-oscillatory scheme for
! hyperbolic conservation laws"
! Journal of Computational Physics,
! 2008, vol. 227, pp. 3191-3211,
! http://dx.doi.org/10.1016/j.jcp.2007.11.038
!
!===============================================================================
!
subroutine reconstruct_weno5z(n, h, f, fl, fr)
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
integer , intent(in) :: n
real(kind=8) , intent(in) :: h
real(kind=8), dimension(n), intent(in) :: f
real(kind=8), dimension(n), intent(out) :: fl, fr
! local variables
!
integer :: i, im1, ip1, im2, ip2
real(kind=8) :: bl, bc, br, tt, df
real(kind=8) :: al, ac, ar
real(kind=8) :: wl, wc, wr, ww
real(kind=8) :: ql, qc, qr
! local arrays for derivatives
!
real(kind=8), dimension(n) :: dfm, dfp, df2
! smoothness indicator coefficients
!
real(kind=8), parameter :: c1 = 1.3d+01 / 1.2d+01, c2 = 2.5d-01
! weight coefficients
!
real(kind=8), parameter :: dl = 1.0d-01, dc = 6.0d-01, dr = 3.0d-01
! interpolation coefficients
!
real(kind=8), parameter :: a11 = 2.0d+00 / 6.0d+00 &
, a12 = - 7.0d+00 / 6.0d+00 &
, a13 = 1.1d+01 / 6.0d+00
real(kind=8), parameter :: a21 = - 1.0d+00 / 6.0d+00 &
, a22 = 5.0d+00 / 6.0d+00 &
, a23 = 2.0d+00 / 6.0d+00
real(kind=8), parameter :: a31 = 2.0d+00 / 6.0d+00 &
, a32 = 5.0d+00 / 6.0d+00 &
, a33 = - 1.0d+00 / 6.0d+00
!
!-------------------------------------------------------------------------------
!
! calculate the left and right derivatives
!
do i = 1, n - 1
ip1 = i + 1
dfp(i ) = f(ip1) - f(i)
dfm(ip1) = dfp(i)
end do
dfm(1) = dfp(1)
dfp(n) = dfm(n)
! calculate the absolute value of the second derivative
!
df2(:) = c1 * (dfp(:) - dfm(:))**2
! iterate along the vector
!
do i = 3, n - 2
! prepare neighbour indices
!
im2 = i - 2
im1 = i - 1
ip1 = i + 1
ip2 = i + 2
! calculate βₖ (eqs. 9-11 in [1])
!
bl = df2(im1) + c2 * (3.0d+00 * dfm(i ) - dfm(im1))**2
bc = df2(i ) + c2 * ( dfp(i ) + dfm(i ))**2
br = df2(ip1) + c2 * (3.0d+00 * dfp(i ) - dfp(ip1))**2
! calculate τ (below eq. 25 in [1])
!
tt = abs(br - bl)
! calculate αₖ (eq. 28 in [1])
!
al = 1.0d+00 + tt / (bl + eps)
ac = 1.0d+00 + tt / (bc + eps)
ar = 1.0d+00 + tt / (br + eps)
! calculate weights
!
wl = dl * al
wc = dc * ac
wr = dr * ar
ww = (wl + wr) + wc
wl = wl / ww
wr = wr / ww
wc = 1.0d+00 - (wl + wr)
! calculate the interpolations of the left state
!
ql = a11 * f(im2) + a12 * f(im1) + a13 * f(i )
qc = a21 * f(im1) + a22 * f(i ) + a23 * f(ip1)
qr = a31 * f(i ) + a32 * f(ip1) + a33 * f(ip2)
! calculate the left state
!
fl(i ) = (wl * ql + wr * qr) + wc * qc
! normalize weights
!
wl = dl * ar
wc = dc * ac
wr = dr * al
ww = (wl + wr) + wc
wl = wl / ww
wr = wr / ww
wc = 1.0d+00 - (wl + wr)
! calculate the interpolations of the right state
!
ql = a11 * f(ip2) + a12 * f(ip1) + a13 * f(i )
qc = a21 * f(ip1) + a22 * f(i ) + a23 * f(im1)
qr = a31 * f(i ) + a32 * f(im1) + a33 * f(im2)
! calculate the right state
!
fr(im1) = (wl * ql + wr * qr) + wc * qc
end do ! i = 3, n - 2
! update the interpolation of the first and last two points
!
fl(1) = 0.5d+00 * (f(1) + f(2))
df = limiter_tvd(0.5d+00, dfm(2), dfp(2))
fr(1) = f(2) - df
fl(2) = f(2) + df
i = n - 1
df = limiter_tvd(0.5d+00, dfm(i), dfp(i))
fr(i-1) = f(i) - df
fl(i) = f(i) + df
fr(i) = 0.5d+00 * (f(i) + f(n))
fl(n) = f(n)
fr(n) = f(n)
!-------------------------------------------------------------------------------
!
end subroutine reconstruct_weno5z
!
!===============================================================================
!
! subroutine RECONSTRUCT_WENO5YC:
! ------------------------------
!
! Subroutine reconstructs the interface states using the fifth order
! Explicit Weighted Essentially Non-Oscillatory (WENO5) method with
! stencil weights by Yamaleev & Carpenter (2009).
!
! Arguments are described in subroutine reconstruct().
!
! References:
!
! [1] Yamaleev, N. K. & Carpenter, H. C.,
! "A Systematic Methodology for Constructing High-Order Energy Stable
! WENO Schemes"
! Journal of Computational Physics,
! 2009, vol. 228, pp. 4248-4272,
! http://dx.doi.org/10.1016/j.jcp.2009.03.002
!
!===============================================================================
!
subroutine reconstruct_weno5yc(n, h, f, fl, fr)
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
integer , intent(in) :: n
real(kind=8) , intent(in) :: h
real(kind=8), dimension(n), intent(in) :: f
real(kind=8), dimension(n), intent(out) :: fl, fr
! local variables
!
integer :: i, im1, ip1, im2, ip2
real(kind=8) :: bl, bc, br, tt, df
real(kind=8) :: al, ac, ar
real(kind=8) :: wl, wc, wr, ww
real(kind=8) :: ql, qc, qr
! local arrays for derivatives
!
real(kind=8), dimension(n) :: dfm, dfp, df2
! smoothness indicator coefficients
!
real(kind=8), parameter :: c1 = 1.3d+01 / 1.2d+01, c2 = 2.5d-01
! weight coefficients
!
real(kind=8), parameter :: dl = 1.0d-01, dc = 6.0d-01, dr = 3.0d-01
! interpolation coefficients
!
real(kind=8), parameter :: a11 = 2.0d+00 / 6.0d+00 &
, a12 = - 7.0d+00 / 6.0d+00 &
, a13 = 1.1d+01 / 6.0d+00
real(kind=8), parameter :: a21 = - 1.0d+00 / 6.0d+00 &
, a22 = 5.0d+00 / 6.0d+00 &
, a23 = 2.0d+00 / 6.0d+00
real(kind=8), parameter :: a31 = 2.0d+00 / 6.0d+00 &
, a32 = 5.0d+00 / 6.0d+00 &
, a33 = - 1.0d+00 / 6.0d+00
!
!-------------------------------------------------------------------------------
!
! calculate the left and right derivatives
!
do i = 1, n - 1
ip1 = i + 1
dfp(i ) = f(ip1) - f(i)
dfm(ip1) = dfp(i)
end do
dfm(1) = dfp(1)
dfp(n) = dfm(n)
! calculate the absolute value of the second derivative
!
df2(:) = c1 * (dfp(:) - dfm(:))**2
! iterate along the vector
!
do i = 3, n - 2
! prepare neighbour indices
!
im2 = i - 2
im1 = i - 1
ip1 = i + 1
ip2 = i + 2
! calculate βₖ (eq. 19 in [1])
!
bl = df2(im1) + c2 * (3.0d+00 * dfm(i ) - dfm(im1))**2
bc = df2(i ) + c2 * ( dfp(i ) + dfm(i ))**2
br = df2(ip1) + c2 * (3.0d+00 * dfp(i ) - dfp(ip1))**2
! calculate τ (below eq. 20 in [1])
!
tt = (6.0d+00 * f(i) - 4.0d+00 * (f(im1) + f(ip1)) &
+ (f(im2) + f(ip2)))**2
! calculate αₖ (eqs. 18 or 58 in [1])
!
al = 1.0d+00 + tt / (bl + eps)
ac = 1.0d+00 + tt / (bc + eps)
ar = 1.0d+00 + tt / (br + eps)
! calculate weights
!
wl = dl * al
wc = dc * ac
wr = dr * ar
ww = (wl + wr) + wc
wl = wl / ww
wr = wr / ww
wc = 1.0d+00 - (wl + wr)
! calculate the interpolations of the left state
!
ql = a11 * f(im2) + a12 * f(im1) + a13 * f(i )
qc = a21 * f(im1) + a22 * f(i ) + a23 * f(ip1)
qr = a31 * f(i ) + a32 * f(ip1) + a33 * f(ip2)
! calculate the left state
!
fl(i ) = (wl * ql + wr * qr) + wc * qc
! normalize weights
!
wl = dl * ar
wc = dc * ac
wr = dr * al
ww = (wl + wr) + wc
wl = wl / ww
wr = wr / ww
wc = 1.0d+00 - (wl + wr)
! calculate the interpolations of the right state
!
ql = a11 * f(ip2) + a12 * f(ip1) + a13 * f(i )
qc = a21 * f(ip1) + a22 * f(i ) + a23 * f(im1)
qr = a31 * f(i ) + a32 * f(im1) + a33 * f(im2)
! calculate the right state
!
fr(im1) = (wl * ql + wr * qr) + wc * qc
end do ! i = 3, n - 2
! update the interpolation of the first and last two points
!
fl(1) = 0.5d+00 * (f(1) + f(2))
df = limiter_tvd(0.5d+00, dfm(2), dfp(2))
fr(1) = f(2) - df
fl(2) = f(2) + df
i = n - 1
df = limiter_tvd(0.5d+00, dfm(i), dfp(i))
fr(i-1) = f(i) - df
fl(i) = f(i) + df
fr(i) = 0.5d+00 * (f(i) + f(n))
fl(n) = f(n)
fr(n) = f(n)
!-------------------------------------------------------------------------------
!
end subroutine reconstruct_weno5yc
!
!===============================================================================
!
! subroutine RECONSTRUCT_WENO5NS:
! ------------------------------
!
! Subroutine reconstructs the interface states using the fifth order
! Explicit Weighted Essentially Non-Oscillatory (WENO5) method with new
! smoothness indicators and stencil weights by Ha et al. (2013).
!
! Arguments are described in subroutine reconstruct().
!
! References:
!
! [1] Ha, Y., Kim, C. H., Lee, Y. J., & Yoon, J.,
! "An improved weighted essentially non-oscillatory scheme with a new
! smoothness indicator",
! Journal of Computational Physics,
! 2013, vol. 232, pp. 68-86
! http://dx.doi.org/10.1016/j.jcp.2012.06.016
!
!===============================================================================
!
subroutine reconstruct_weno5ns(n, h, f, fl, fr)
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
integer , intent(in) :: n
real(kind=8) , intent(in) :: h
real(kind=8), dimension(n), intent(in) :: f
real(kind=8), dimension(n), intent(out) :: fl, fr
! local variables
!
integer :: i, im1, ip1, im2, ip2
real(kind=8) :: bl, bc, br
real(kind=8) :: al, ac, ar, aa
real(kind=8) :: wl, wc, wr
real(kind=8) :: df, lq, l3, zt
real(kind=8) :: ql, qc, qr
! local arrays for derivatives
!
real(kind=8), dimension(n) :: dfm, dfp, df2
! weight coefficients
!
real(kind=8), parameter :: dl = 1.0d-01, dc = 6.0d-01, dr = 3.0d-01
! interpolation coefficients
!
real(kind=8), parameter :: a11 = 2.0d+00 / 6.0d+00 &
, a12 = - 7.0d+00 / 6.0d+00 &
, a13 = 1.1d+01 / 6.0d+00
real(kind=8), parameter :: a21 = - 1.0d+00 / 6.0d+00 &
, a22 = 5.0d+00 / 6.0d+00 &
, a23 = 2.0d+00 / 6.0d+00
real(kind=8), parameter :: a31 = 2.0d+00 / 6.0d+00 &
, a32 = 5.0d+00 / 6.0d+00 &
, a33 = - 1.0d+00 / 6.0d+00
! the free parameter for smoothness indicators (see Eq. 3.6 in [1])
!
real(kind=8), parameter :: xi = 4.0d-01
!
!-------------------------------------------------------------------------------
!
! calculate the left and right derivatives
!
do i = 1, n - 1
ip1 = i + 1
dfp(i ) = f(ip1) - f(i)
dfm(ip1) = dfp(i)
end do
dfm(1) = dfp(1)
dfp(n) = dfm(n)
! calculate the absolute value of the second derivative
!
df2(:) = 0.5d+00 * abs(dfp(:) - dfm(:))
! iterate along the vector
!
do i = 3, n - 2
! prepare neighbour indices
!
im2 = i - 2
im1 = i - 1
ip1 = i + 1
ip2 = i + 2
! calculate βₖ (eq. 3.6 in [1])
!
df = abs(dfp(i))
lq = xi * df
bl = df2(im1) + xi * abs(2.0d+00 * dfm(i) - dfm(im1))
bc = df2(i ) + lq
br = df2(ip1) + lq
! calculate ζ (below eq. 3.6 in [1])
!
l3 = df**3
zt = 0.5d+00 * ((bl - br)**2 + (l3 / (1.0d+00 + l3))**2)
! calculate αₖ (eq. 3.9 in [4])
!
al = dl * (1.0d+00 + zt / (bl + eps)**2)
ac = dc * (1.0d+00 + zt / (bc + eps)**2)
ar = dr * (1.0d+00 + zt / (br + eps)**2)
! calculate weights
!
aa = (al + ar) + ac
wl = al / aa
wr = ar / aa
wc = 1.0d+00 - (wl + wr)
! calculate the interpolations of the left state
!
ql = a11 * f(im2) + a12 * f(im1) + a13 * f(i )
qc = a21 * f(im1) + a22 * f(i ) + a23 * f(ip1)
qr = a31 * f(i ) + a32 * f(ip1) + a33 * f(ip2)
! calculate the left state
!
fl(i ) = (wl * ql + wr * qr) + wc * qc
! calculate βₖ (eq. 3.6 in [1])
!
df = abs(dfm(i))
lq = xi * df
bl = df2(ip1) + xi * abs(2.0d+00 * dfp(i) - dfp(ip1))
bc = df2(i ) + lq
br = df2(im1) + lq
! calculate ζ (below eq. 3.6 in [1])
l3 = df**3
zt = 0.5d+00 * ((bl - br)**2 + (l3 / (1.0d+00 + l3))**2)
! calculate αₖ (eq. 3.9 in [4])
!
al = dl * (1.0d+00 + zt / (bl + eps)**2)
ac = dc * (1.0d+00 + zt / (bc + eps)**2)
ar = dr * (1.0d+00 + zt / (br + eps)**2)
! normalize weights
!
aa = (al + ar) + ac
wl = al / aa
wr = ar / aa
wc = 1.0d+00 - (wl + wr)
! calculate the interpolations of the right state
!
ql = a11 * f(ip2) + a12 * f(ip1) + a13 * f(i )
qc = a21 * f(ip1) + a22 * f(i ) + a23 * f(im1)
qr = a31 * f(i ) + a32 * f(im1) + a33 * f(im2)
! calculate the right state
!
fr(im1) = (wl * ql + wr * qr) + wc * qc
end do ! i = 3, n - 2
! update the interpolation of the first and last two points
!
fl(1) = 0.5d+00 * (f(1) + f(2))
df = limiter_tvd(0.5d+00, dfm(2), dfp(2))
fr(1) = f(2) - df
fl(2) = f(2) + df
i = n - 1
df = limiter_tvd(0.5d+00, dfm(i), dfp(i))
fr(i-1) = f(i) - df
fl(i) = f(i) + df
fr(i) = 0.5d+00 * (f(i) + f(n))
fl(n) = f(n)
fr(n) = f(n)
!-------------------------------------------------------------------------------
!
end subroutine reconstruct_weno5ns
!
!===============================================================================
!
! subroutine RECONSTRUCT_CRWENO5Z:
! -------------------------------
!
! Subroutine reconstructs the interface states using the fifth order
! Compact-Reconstruction Weighted Essentially Non-Oscillatory (CRWENO)
! method and smoothness indicators by Borges et al. (2008).
!
! Arguments are described in subroutine reconstruct().
!
! References:
!
! [1] Ghosh, D. & Baeder, J. D.,
! "Compact Reconstruction Schemes with Weighted ENO Limiting for
! Hyperbolic Conservation Laws"
! SIAM Journal on Scientific Computing,
! 2012, vol. 34, no. 3, pp. A1678-A1706,
! http://dx.doi.org/10.1137/110857659
! [2] Ghosh, D. & Baeder, J. D.,
! "Weighted Non-linear Compact Schemes for the Direct Numerical
! Simulation of Compressible, Turbulent Flows"
! Journal on Scientific Computing,
! 2014,
! http://dx.doi.org/10.1007/s10915-014-9818-0
! [3] Borges, R., Carmona, M., Costa, B., & Don, W.-S.,
! "An improved weighted essentially non-oscillatory scheme for
! hyperbolic conservation laws"
! Journal of Computational Physics,
! 2008, vol. 227, pp. 3191-3211,
! http://dx.doi.org/10.1016/j.jcp.2007.11.038
!
!===============================================================================
!
subroutine reconstruct_crweno5z(n, h, f, fl, fr)
! include external procedures
!
use algebra , only : tridiag
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
integer , intent(in) :: n
real(kind=8) , intent(in) :: h
real(kind=8), dimension(n), intent(in) :: f
real(kind=8), dimension(n), intent(out) :: fl, fr
! local variables
!
integer :: i, im1, ip1, im2, ip2
real(kind=8) :: bl, bc, br, tt
real(kind=8) :: wl, wc, wr, ww
real(kind=8) :: ql, qc, qr
! local arrays for derivatives
!
real(kind=8), dimension(n) :: dfm, dfp, df2
real(kind=8), dimension(n) :: al, ac, ar
real(kind=8), dimension(n) :: u
real(kind=8), dimension(n,2) :: a, b, c, r
! smoothness indicator coefficients
!
real(kind=8), parameter :: c1 = 1.3d+01 / 1.2d+01, c2 = 2.5d-01
! weight coefficients for implicit (c) and explicit (d) interpolations
!
real(kind=8), parameter :: cl = 1.0d+00 / 9.0d+00
real(kind=8), parameter :: cc = 5.0d+00 / 9.0d+00
real(kind=8), parameter :: cr = 1.0d+00 / 3.0d+00
real(kind=8), parameter :: dl = 1.0d-01, dc = 6.0d-01, dr = 3.0d-01
! implicit method coefficients
!
real(kind=8), parameter :: dq = 5.0d-01
! interpolation coefficients
!
real(kind=8), parameter :: a11 = 2.0d+00 / 6.0d+00 &
, a12 = - 7.0d+00 / 6.0d+00 &
, a13 = 1.1d+01 / 6.0d+00
real(kind=8), parameter :: a21 = - 1.0d+00 / 6.0d+00 &
, a22 = 5.0d+00 / 6.0d+00 &
, a23 = 2.0d+00 / 6.0d+00
real(kind=8), parameter :: a31 = 2.0d+00 / 6.0d+00 &
, a32 = 5.0d+00 / 6.0d+00 &
, a33 = - 1.0d+00 / 6.0d+00
!
!-------------------------------------------------------------------------------
!
! calculate the left and right derivatives
!
do i = 1, n - 1
ip1 = i + 1
dfp(i ) = f(ip1) - f(i)
dfm(ip1) = dfp(i)
end do
dfm(1) = dfp(1)
dfp(n) = dfm(n)
! calculate the absolute value of the second derivative
!
df2(:) = c1 * (dfp(:) - dfm(:))**2
! prepare smoothness indicators
!
do i = 2, n - 1
! prepare neighbour indices
!
im1 = i - 1
ip1 = i + 1
! calculate βₖ (eqs. 9-11 in [1])
!
bl = df2(im1) + c2 * (3.0d+00 * dfm(i ) - dfm(im1))**2
bc = df2(i ) + c2 * ( dfp(i ) + dfm(i ))**2
br = df2(ip1) + c2 * (3.0d+00 * dfp(i ) - dfp(ip1))**2
! calculate τ (below eq. 25 in [1])
!
tt = abs(br - bl)
! calculate αₖ (eq. 28 in [1])
!
al(i) = 1.0d+00 + tt / (bl + eps)
ac(i) = 1.0d+00 + tt / (bc + eps)
ar(i) = 1.0d+00 + tt / (br + eps)
end do ! i = 2, n - 1
! prepare tridiagonal system coefficients
!
do i = ng, n - ng + 1
! prepare neighbour indices
!
im1 = i - 1
ip1 = i + 1
! calculate weights
!
wl = cl * al(i)
wc = cc * ac(i)
wr = cr * ar(i)
ww = (wl + wr) + wc
wl = wl / ww
wr = wr / ww
wc = 1.0d+00 - (wl + wr)
! calculate tridiagonal matrix coefficients
!
a(i,1) = 2.0d+00 * wl + wc
b(i,1) = wl + 2.0d+00 * (wc + wr)
c(i,1) = wr
! prepare right hand side of tridiagonal equation
!
r(i,1) = (wl * f(im1) + (5.0d+00 * (wl + wc) + wr) * f(i ) &
+ (wc + 5.0d+00 * wr) * f(ip1)) * dq
! calculate weights
!
wl = cl * ar(i)
wc = cc * ac(i)
wr = cr * al(i)
ww = (wl + wr) + wc
wl = wl / ww
wr = wr / ww
wc = 1.0d+00 - (wl + wr)
! calculate tridiagonal matrix coefficients
!
a(i,2) = wr
b(i,2) = wl + 2.0d+00 * (wc + wr)
c(i,2) = 2.0d+00 * wl + wc
! prepare right hand side of tridiagonal equation
!
r(i,2) = (wl * f(ip1) + (5.0d+00 * (wl + wc) + wr) * f(i ) &
+ (wc + 5.0d+00 * wr) * f(im1)) * dq
end do ! i = ng, n - ng + 1
! interpolate ghost zones using explicit solver (left-side reconstruction)
!
do i = 2, ng
! prepare neighbour indices
!
im2 = max(1, i - 2)
im1 = i - 1
ip1 = i + 1
ip2 = i + 2
! calculate weights
!
wl = dl * al(i)
wc = dc * ac(i)
wr = dr * ar(i)
ww = (wl + wr) + wc
wl = wl / ww
wr = wr / ww
wc = 1.0d+00 - (wl + wr)
! calculate the interpolations of the left state
!
ql = a11 * f(im2) + a12 * f(im1) + a13 * f(i )
qc = a21 * f(im1) + a22 * f(i ) + a23 * f(ip1)
qr = a31 * f(i ) + a32 * f(ip1) + a33 * f(ip2)
! calculate the left state
!
fl(i) = (wl * ql + wr * qr) + wc * qc
! prepare coefficients of the tridiagonal system
!
a(i,1) = 0.0d+00
b(i,1) = 1.0d+00
c(i,1) = 0.0d+00
r(i,1) = fl(i)
end do ! i = 2, ng
a(1,1) = 0.0d+00
b(1,1) = 1.0d+00
c(1,1) = 0.0d+00
r(1,1) = 0.5d+00 * (f(1) + f(2))
! interpolate ghost zones using explicit solver (left-side reconstruction)
!
do i = n - ng, n - 1
! prepare neighbour indices
!
im2 = i - 2
im1 = i - 1
ip1 = i + 1
ip2 = min(n, i + 2)
! calculate weights
!
wl = dl * al(i)
wc = dc * ac(i)
wr = dr * ar(i)
ww = (wl + wr) + wc
wl = wl / ww
wr = wr / ww
wc = 1.0d+00 - (wl + wr)
! calculate the interpolations of the left state
!
ql = a11 * f(im2) + a12 * f(im1) + a13 * f(i )
qc = a21 * f(im1) + a22 * f(i ) + a23 * f(ip1)
qr = a31 * f(i ) + a32 * f(ip1) + a33 * f(ip2)
! calculate the left state
!
fl(i) = (wl * ql + wr * qr) + wc * qc
! prepare coefficients of the tridiagonal system
!
a(i,1) = 0.0d+00
b(i,1) = 1.0d+00
c(i,1) = 0.0d+00
r(i,1) = fl(i)
end do ! i = n - ng, n - 1
a(n,1) = 0.0d+00
b(n,1) = 1.0d+00
c(n,1) = 0.0d+00
r(n,1) = f(n)
! interpolate ghost zones using explicit solver (right-side reconstruction)
!
do i = 2, ng + 1
! prepare neighbour indices
!
im2 = max(1, i - 2)
im1 = i - 1
ip1 = i + 1
ip2 = i + 2
! normalize weights
!
wl = dl * ar(i)
wc = dc * ac(i)
wr = dr * al(i)
ww = (wl + wr) + wc
wl = wl / ww
wr = wr / ww
wc = 1.0d+00 - (wl + wr)
! calculate the interpolations of the right state
!
ql = a11 * f(ip2) + a12 * f(ip1) + a13 * f(i )
qc = a21 * f(ip1) + a22 * f(i ) + a23 * f(im1)
qr = a31 * f(i ) + a32 * f(im1) + a33 * f(im2)
! calculate the right state
!
fr(i) = (wl * ql + wr * qr) + wc * qc
! prepare coefficients of the tridiagonal system
!
a(i,2) = 0.0d+00
b(i,2) = 1.0d+00
c(i,2) = 0.0d+00
r(i,2) = fr(i)
end do ! i = 2, ng + 1
a(1,2) = 0.0d+00
b(1,2) = 1.0d+00
c(1,2) = 0.0d+00
r(1,2) = f(1)
! interpolate ghost zones using explicit solver (right-side reconstruction)
!
do i = n - ng + 1, n - 1
! prepare neighbour indices
!
im2 = max(1, i - 2)
im1 = max(1, i - 1)
ip1 = min(n, i + 1)
ip2 = min(n, i + 2)
! normalize weights
!
wl = dl * ar(i)
wc = dc * ac(i)
wr = dr * al(i)
ww = (wl + wr) + wc
wl = wl / ww
wr = wr / ww
wc = 1.0d+00 - (wl + wr)
! calculate the interpolations of the right state
!
ql = a11 * f(ip2) + a12 * f(ip1) + a13 * f(i )
qc = a21 * f(ip1) + a22 * f(i ) + a23 * f(im1)
qr = a31 * f(i ) + a32 * f(im1) + a33 * f(im2)
! calculate the right state
!
fr(i) = (wl * ql + wr * qr) + wc * qc
! prepare coefficients of the tridiagonal system
!
a(i,2) = 0.0d+00
b(i,2) = 1.0d+00
c(i,2) = 0.0d+00
r(i,2) = fr(i)
end do ! i = n - ng + 1, n - 1
a(n,2) = 0.0d+00
b(n,2) = 1.0d+00
c(n,2) = 0.0d+00
r(n,2) = 0.5d+00 * (f(n-1) + f(n))
! solve the tridiagonal system of equations for the left-side interpolation
!
call tridiag(n, a(1:n,1), b(1:n,1), c(1:n,1), r(1:n,1), u(1:n))
! substitute the left-side values
!
fl(1:n ) = u(1:n)
! solve the tridiagonal system of equations for the left-side interpolation
!
call tridiag(n, a(1:n,2), b(1:n,2), c(1:n,2), r(1:n,2), u(1:n))
! substitute the right-side values
!
fr(1:n-1) = u(2:n)
! update the interpolation of the first and last points
!
i = n - 1
fl(1) = 0.5d+00 * (f(1) + f(2))
fr(i) = 0.5d+00 * (f(i) + f(n))
fl(n) = f(n)
fr(n) = f(n)
!-------------------------------------------------------------------------------
!
end subroutine reconstruct_crweno5z
!
!===============================================================================
!
! subroutine RECONSTRUCT_CRWENO5YC:
! --------------------------------
!
! Subroutine reconstructs the interface states using the fifth order
! Compact-Reconstruction Weighted Essentially Non-Oscillatory (CRWENO)
! method and smoothness indicators by Yamaleev & Carpenter (2009).
!
! Arguments are described in subroutine reconstruct().
!
! References:
!
! [1] Ghosh, D. & Baeder, J. D.,
! "Compact Reconstruction Schemes with Weighted ENO Limiting for
! Hyperbolic Conservation Laws"
! SIAM Journal on Scientific Computing,
! 2012, vol. 34, no. 3, pp. A1678-A1706,
! http://dx.doi.org/10.1137/110857659
! [2] Ghosh, D. & Baeder, J. D.,
! "Weighted Non-linear Compact Schemes for the Direct Numerical
! Simulation of Compressible, Turbulent Flows"
! Journal on Scientific Computing,
! 2014,
! http://dx.doi.org/10.1007/s10915-014-9818-0
! [3] Yamaleev, N. K. & Carpenter, H. C.,
! "A Systematic Methodology for Constructing High-Order Energy Stable
! WENO Schemes"
! Journal of Computational Physics,
! 2009, vol. 228, pp. 4248-4272,
! http://dx.doi.org/10.1016/j.jcp.2009.03.002
!
!===============================================================================
!
subroutine reconstruct_crweno5yc(n, h, f, fl, fr)
! include external procedures
!
use algebra , only : tridiag
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
integer , intent(in) :: n
real(kind=8) , intent(in) :: h
real(kind=8), dimension(n), intent(in) :: f
real(kind=8), dimension(n), intent(out) :: fl, fr
! local variables
!
integer :: i, im1, ip1, im2, ip2
real(kind=8) :: bl, bc, br, tt
real(kind=8) :: wl, wc, wr, ww
real(kind=8) :: ql, qc, qr
! local arrays for derivatives
!
real(kind=8), dimension(n) :: dfm, dfp, df2
real(kind=8), dimension(n) :: al, ac, ar
real(kind=8), dimension(n) :: u
real(kind=8), dimension(n,2) :: a, b, c, r
! smoothness indicator coefficients
!
real(kind=8), parameter :: c1 = 1.3d+01 / 1.2d+01, c2 = 2.5d-01
! weight coefficients for implicit (c) and explicit (d) interpolations
!
real(kind=8), parameter :: cl = 1.0d+00 / 9.0d+00
real(kind=8), parameter :: cc = 5.0d+00 / 9.0d+00
real(kind=8), parameter :: cr = 1.0d+00 / 3.0d+00
real(kind=8), parameter :: dl = 1.0d-01, dc = 6.0d-01, dr = 3.0d-01
! implicit method coefficients
!
real(kind=8), parameter :: dq = 5.0d-01
! interpolation coefficients
!
real(kind=8), parameter :: a11 = 2.0d+00 / 6.0d+00 &
, a12 = - 7.0d+00 / 6.0d+00 &
, a13 = 1.1d+01 / 6.0d+00
real(kind=8), parameter :: a21 = - 1.0d+00 / 6.0d+00 &
, a22 = 5.0d+00 / 6.0d+00 &
, a23 = 2.0d+00 / 6.0d+00
real(kind=8), parameter :: a31 = 2.0d+00 / 6.0d+00 &
, a32 = 5.0d+00 / 6.0d+00 &
, a33 = - 1.0d+00 / 6.0d+00
!
!-------------------------------------------------------------------------------
!
! calculate the left and right derivatives
!
do i = 1, n - 1
ip1 = i + 1
dfp(i ) = f(ip1) - f(i)
dfm(ip1) = dfp(i)
end do
dfm(1) = dfp(1)
dfp(n) = dfm(n)
! calculate the absolute value of the second derivative
!
df2(:) = c1 * (dfp(:) - dfm(:))**2
! prepare smoothness indicators
!
do i = 2, n - 1
! prepare neighbour indices
!
im2 = max(1, i - 2)
im1 = i - 1
ip1 = i + 1
ip2 = min(n, i + 2)
! calculate βₖ (eqs. 9-11 in [1])
!
bl = df2(im1) + c2 * (3.0d+00 * dfm(i ) - dfm(im1))**2
bc = df2(i ) + c2 * ( dfp(i ) + dfm(i ))**2
br = df2(ip1) + c2 * (3.0d+00 * dfp(i ) - dfp(ip1))**2
! calculate τ (below eq. 64 in [3])
!
tt = (6.0d+00 * f(i) + (f(im2) + f(ip2)) &
- 4.0d+00 * (f(im1) + f(ip1)))**2
! calculate αₖ (eq. 28 in [1])
!
al(i) = 1.0d+00 + tt / (bl + eps)
ac(i) = 1.0d+00 + tt / (bc + eps)
ar(i) = 1.0d+00 + tt / (br + eps)
end do ! i = 2, n - 1
! prepare tridiagonal system coefficients
!
do i = ng, n - ng + 1
! prepare neighbour indices
!
im1 = i - 1
ip1 = i + 1
! calculate weights
!
wl = cl * al(i)
wc = cc * ac(i)
wr = cr * ar(i)
ww = (wl + wr) + wc
wl = wl / ww
wr = wr / ww
wc = 1.0d+00 - (wl + wr)
! calculate tridiagonal matrix coefficients
!
a(i,1) = 2.0d+00 * wl + wc
b(i,1) = wl + 2.0d+00 * (wc + wr)
c(i,1) = wr
! prepare right hand side of tridiagonal equation
!
r(i,1) = (wl * f(im1) + (5.0d+00 * (wl + wc) + wr) * f(i ) &
+ (wc + 5.0d+00 * wr) * f(ip1)) * dq
! calculate weights
!
wl = cl * ar(i)
wc = cc * ac(i)
wr = cr * al(i)
ww = (wl + wr) + wc
wl = wl / ww
wr = wr / ww
wc = 1.0d+00 - (wl + wr)
! calculate tridiagonal matrix coefficients
!
a(i,2) = wr
b(i,2) = wl + 2.0d+00 * (wc + wr)
c(i,2) = 2.0d+00 * wl + wc
! prepare right hand side of tridiagonal equation
!
r(i,2) = (wl * f(ip1) + (5.0d+00 * (wl + wc) + wr) * f(i ) &
+ (wc + 5.0d+00 * wr) * f(im1)) * dq
end do ! i = ng, n - ng + 1
! interpolate ghost zones using explicit solver (left-side reconstruction)
!
do i = 2, ng
! prepare neighbour indices
!
im2 = max(1, i - 2)
im1 = i - 1
ip1 = i + 1
ip2 = i + 2
! calculate weights
!
wl = dl * al(i)
wc = dc * ac(i)
wr = dr * ar(i)
ww = (wl + wr) + wc
wl = wl / ww
wr = wr / ww
wc = 1.0d+00 - (wl + wr)
! calculate the interpolations of the left state
!
ql = a11 * f(im2) + a12 * f(im1) + a13 * f(i )
qc = a21 * f(im1) + a22 * f(i ) + a23 * f(ip1)
qr = a31 * f(i ) + a32 * f(ip1) + a33 * f(ip2)
! calculate the left state
!
fl(i) = (wl * ql + wr * qr) + wc * qc
! prepare coefficients of the tridiagonal system
!
a(i,1) = 0.0d+00
b(i,1) = 1.0d+00
c(i,1) = 0.0d+00
r(i,1) = fl(i)
end do ! i = 2, ng
a(1,1) = 0.0d+00
b(1,1) = 1.0d+00
c(1,1) = 0.0d+00
r(1,1) = 0.5d+00 * (f(1) + f(2))
! interpolate ghost zones using explicit solver (left-side reconstruction)
!
do i = n - ng, n - 1
! prepare neighbour indices
!
im2 = i - 2
im1 = i - 1
ip1 = i + 1
ip2 = min(n, i + 2)
! calculate weights
!
wl = dl * al(i)
wc = dc * ac(i)
wr = dr * ar(i)
ww = (wl + wr) + wc
wl = wl / ww
wr = wr / ww
wc = 1.0d+00 - (wl + wr)
! calculate the interpolations of the left state
!
ql = a11 * f(im2) + a12 * f(im1) + a13 * f(i )
qc = a21 * f(im1) + a22 * f(i ) + a23 * f(ip1)
qr = a31 * f(i ) + a32 * f(ip1) + a33 * f(ip2)
! calculate the left state
!
fl(i) = (wl * ql + wr * qr) + wc * qc
! prepare coefficients of the tridiagonal system
!
a(i,1) = 0.0d+00
b(i,1) = 1.0d+00
c(i,1) = 0.0d+00
r(i,1) = fl(i)
end do ! i = n - ng, n - 1
a(n,1) = 0.0d+00
b(n,1) = 1.0d+00
c(n,1) = 0.0d+00
r(n,1) = f(n)
! interpolate ghost zones using explicit solver (right-side reconstruction)
!
do i = 2, ng + 1
! prepare neighbour indices
!
im2 = max(1, i - 2)
im1 = i - 1
ip1 = i + 1
ip2 = i + 2
! normalize weights
!
wl = dl * ar(i)
wc = dc * ac(i)
wr = dr * al(i)
ww = (wl + wr) + wc
wl = wl / ww
wr = wr / ww
wc = 1.0d+00 - (wl + wr)
! calculate the interpolations of the right state
!
ql = a11 * f(ip2) + a12 * f(ip1) + a13 * f(i )
qc = a21 * f(ip1) + a22 * f(i ) + a23 * f(im1)
qr = a31 * f(i ) + a32 * f(im1) + a33 * f(im2)
! calculate the right state
!
fr(i) = (wl * ql + wr * qr) + wc * qc
! prepare coefficients of the tridiagonal system
!
a(i,2) = 0.0d+00
b(i,2) = 1.0d+00
c(i,2) = 0.0d+00
r(i,2) = fr(i)
end do ! i = 2, ng + 1
a(1,2) = 0.0d+00
b(1,2) = 1.0d+00
c(1,2) = 0.0d+00
r(1,2) = f(1)
! interpolate ghost zones using explicit solver (right-side reconstruction)
!
do i = n - ng + 1, n - 1
! prepare neighbour indices
!
im2 = i - 2
im1 = i - 1
ip1 = i + 1
ip2 = min(n, i + 2)
! normalize weights
!
wl = dl * ar(i)
wc = dc * ac(i)
wr = dr * al(i)
ww = (wl + wr) + wc
wl = wl / ww
wr = wr / ww
wc = 1.0d+00 - (wl + wr)
! calculate the interpolations of the right state
!
ql = a11 * f(ip2) + a12 * f(ip1) + a13 * f(i )
qc = a21 * f(ip1) + a22 * f(i ) + a23 * f(im1)
qr = a31 * f(i ) + a32 * f(im1) + a33 * f(im2)
! calculate the right state
!
fr(i) = (wl * ql + wr * qr) + wc * qc
! prepare coefficients of the tridiagonal system
!
a(i,2) = 0.0d+00
b(i,2) = 1.0d+00
c(i,2) = 0.0d+00
r(i,2) = fr(i)
end do ! i = n - ng + 1, n - 1
a(n,2) = 0.0d+00
b(n,2) = 1.0d+00
c(n,2) = 0.0d+00
r(n,2) = 0.5d+00 * (f(n-1) + f(n))
! solve the tridiagonal system of equations for the left-side interpolation
!
call tridiag(n, a(1:n,1), b(1:n,1), c(1:n,1), r(1:n,1), u(1:n))
! substitute the left-side values
!
fl(1:n ) = u(1:n)
! solve the tridiagonal system of equations for the left-side interpolation
!
call tridiag(n, a(1:n,2), b(1:n,2), c(1:n,2), r(1:n,2), u(1:n))
! substitute the right-side values
!
fr(1:n-1) = u(2:n)
! update the interpolation of the first and last points
!
i = n - 1
fl(1) = 0.5d+00 * (f(1) + f(2))
fr(i) = 0.5d+00 * (f(i) + f(n))
fl(n) = f(n)
fr(n) = f(n)
!-------------------------------------------------------------------------------
!
end subroutine reconstruct_crweno5yc
!
!===============================================================================
!
! subroutine RECONSTRUCT_CRWENO5NS:
! --------------------------------
!
! Subroutine reconstructs the interface states using the fifth order
! Compact-Reconstruction Weighted Essentially Non-Oscillatory (CRWENO)
! method combined with the smoothness indicators by Ha et al. (2013).
!
! Arguments are described in subroutine reconstruct().
!
! References:
!
! [1] Ghosh, D. & Baeder, J. D.,
! "Compact Reconstruction Schemes with Weighted ENO Limiting for
! Hyperbolic Conservation Laws"
! SIAM Journal on Scientific Computing,
! 2012, vol. 34, no. 3, pp. A1678-A1706,
! http://dx.doi.org/10.1137/110857659
! [2] Ghosh, D. & Baeder, J. D.,
! "Weighted Non-linear Compact Schemes for the Direct Numerical
! Simulation of Compressible, Turbulent Flows"
! Journal on Scientific Computing,
! 2014,
! http://dx.doi.org/10.1007/s10915-014-9818-0
! [3] Ha, Y., Kim, C. H., Lee, Y. J., & Yoon, J.,
! "An improved weighted essentially non-oscillatory scheme with a new
! smoothness indicator",
! Journal of Computational Physics,
! 2013, vol. 232, pp. 68-86
! http://dx.doi.org/10.1016/j.jcp.2012.06.016
!
!===============================================================================
!
subroutine reconstruct_crweno5ns(n, h, f, fl, fr)
! include external procedures
!
use algebra , only : tridiag
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
integer , intent(in) :: n
real(kind=8) , intent(in) :: h
real(kind=8), dimension(n), intent(in) :: f
real(kind=8), dimension(n), intent(out) :: fl, fr
! local variables
!
integer :: i, im1, ip1, im2, ip2
real(kind=8) :: bl, bc, br, tt
real(kind=8) :: wl, wc, wr, ww
real(kind=8) :: df, lq, l3, zt
real(kind=8) :: ql, qc, qr
! local arrays for derivatives
!
real(kind=8), dimension(n) :: dfm, dfp, df2
real(kind=8), dimension(n,2) :: al, ac, ar
real(kind=8), dimension(n) :: u
real(kind=8), dimension(n,2) :: a, b, c, r
! the free parameter for smoothness indicators (see eq. 3.6 in [3])
!
real(kind=8), parameter :: xi = 4.0d-01
! weight coefficients for implicit (c) and explicit (d) interpolations
!
real(kind=8), parameter :: cl = 1.0d+00 / 9.0d+00
real(kind=8), parameter :: cc = 5.0d+00 / 9.0d+00
real(kind=8), parameter :: cr = 1.0d+00 / 3.0d+00
real(kind=8), parameter :: dl = 1.0d-01, dc = 6.0d-01, dr = 3.0d-01
! implicit method coefficients
!
real(kind=8), parameter :: dq = 5.0d-01
! 3rd order interpolation coefficients for three stencils
!
real(kind=8), parameter :: a11 = 2.0d+00 / 6.0d+00 &
, a12 = - 7.0d+00 / 6.0d+00 &
, a13 = 1.1d+01 / 6.0d+00
real(kind=8), parameter :: a21 = - 1.0d+00 / 6.0d+00 &
, a22 = 5.0d+00 / 6.0d+00 &
, a23 = 2.0d+00 / 6.0d+00
real(kind=8), parameter :: a31 = 2.0d+00 / 6.0d+00 &
, a32 = 5.0d+00 / 6.0d+00 &
, a33 = - 1.0d+00 / 6.0d+00
!
!-------------------------------------------------------------------------------
!
! calculate the left and right derivatives
!
do i = 1, n - 1
ip1 = i + 1
dfp(i ) = f(ip1) - f(i)
dfm(ip1) = dfp(i)
end do
dfm(1) = dfp(1)
dfp(n) = dfm(n)
! calculate the absolute value of the second derivative
!
df2(:) = 0.5d+00 * abs(dfp(:) - dfm(:))
! prepare smoothness indicators
!
do i = 2, n - 1
! prepare neighbour indices
!
im1 = i - 1
ip1 = i + 1
! calculate βₖ
!
df = abs(dfp(i))
lq = xi * df
bl = df2(im1) + xi * abs(2.0d+00 * dfm(i) - dfm(im1))
bc = df2(i ) + lq
br = df2(ip1) + lq
! calculate ζ
!
l3 = df**3
zt = 0.5d+00 * ((bl - br)**2 + (l3 / (1.0d+00 + l3))**2)
! calculate αₖ
!
al(i,1) = 1.0d+00 + zt / (bl + eps)**2
ac(i,1) = 1.0d+00 + zt / (bc + eps)**2
ar(i,1) = 1.0d+00 + zt / (br + eps)**2
! calculate βₖ
!
df = abs(dfm(i))
lq = xi * df
bl = df2(im1) + lq
bc = df2(i ) + lq
br = df2(ip1) + xi * abs(2.0d+00 * dfp(i) - dfp(ip1))
! calculate ζ
l3 = df**3
zt = 0.5d+00 * ((bl - br)**2 + (l3 / (1.0d+00 + l3))**2)
! calculate αₖ
!
al(i,2) = 1.0d+00 + zt / (bl + eps)**2
ac(i,2) = 1.0d+00 + zt / (bc + eps)**2
ar(i,2) = 1.0d+00 + zt / (br + eps)**2
end do ! i = 2, n - 1
! prepare tridiagonal system coefficients
!
do i = ng, n - ng + 1
! prepare neighbour indices
!
im1 = i - 1
ip1 = i + 1
! calculate weights
!
wl = cl * al(i,1)
wc = cc * ac(i,1)
wr = cr * ar(i,1)
ww = (wl + wr) + wc
wl = wl / ww
wr = wr / ww
wc = 1.0d+00 - (wl + wr)
! calculate tridiagonal matrix coefficients
!
a(i,1) = 2.0d+00 * wl + wc
b(i,1) = wl + 2.0d+00 * (wc + wr)
c(i,1) = wr
! prepare right hand side of tridiagonal equation
!
r(i,1) = (wl * f(im1) + (5.0d+00 * (wl + wc) + wr) * f(i ) &
+ (wc + 5.0d+00 * wr) * f(ip1)) * dq
! calculate weights
!
wl = cl * ar(i,2)
wc = cc * ac(i,2)
wr = cr * al(i,2)
ww = (wl + wr) + wc
wl = wl / ww
wr = wr / ww
wc = 1.0d+00 - (wl + wr)
! calculate tridiagonal matrix coefficients
!
a(i,2) = wr
b(i,2) = wl + 2.0d+00 * (wc + wr)
c(i,2) = 2.0d+00 * wl + wc
! prepare right hand side of tridiagonal equation
!
r(i,2) = (wl * f(ip1) + (5.0d+00 * (wl + wc) + wr) * f(i ) &
+ (wc + 5.0d+00 * wr) * f(im1)) * dq
end do ! i = ng, n - ng + 1
! interpolate ghost zones using explicit solver (left-side reconstruction)
!
do i = 2, ng
! prepare neighbour indices
!
im2 = max(1, i - 2)
im1 = i - 1
ip1 = i + 1
ip2 = i + 2
! calculate weights
!
wl = dl * al(i,1)
wc = dc * ac(i,1)
wr = dr * ar(i,1)
ww = (wl + wr) + wc
wl = wl / ww
wr = wr / ww
wc = 1.0d+00 - (wl + wr)
! calculate the interpolations of the left state
!
ql = a11 * f(im2) + a12 * f(im1) + a13 * f(i )
qc = a21 * f(im1) + a22 * f(i ) + a23 * f(ip1)
qr = a31 * f(i ) + a32 * f(ip1) + a33 * f(ip2)
! calculate the left state
!
fl(i) = (wl * ql + wr * qr) + wc * qc
! prepare coefficients of the tridiagonal system
!
a(i,1) = 0.0d+00
b(i,1) = 1.0d+00
c(i,1) = 0.0d+00
r(i,1) = fl(i)
end do ! i = 2, ng
a(1,1) = 0.0d+00
b(1,1) = 1.0d+00
c(1,1) = 0.0d+00
r(1,1) = 0.5d+00 * (f(1) + f(2))
! interpolate ghost zones using explicit solver (left-side reconstruction)
!
do i = n - ng, n - 1
! prepare neighbour indices
!
im2 = i - 2
im1 = i - 1
ip1 = i + 1
ip2 = min(n, i + 2)
! calculate weights
!
wl = dl * al(i,1)
wc = dc * ac(i,1)
wr = dr * ar(i,1)
ww = (wl + wr) + wc
wl = wl / ww
wr = wr / ww
wc = 1.0d+00 - (wl + wr)
! calculate the interpolations of the left state
!
ql = a11 * f(im2) + a12 * f(im1) + a13 * f(i )
qc = a21 * f(im1) + a22 * f(i ) + a23 * f(ip1)
qr = a31 * f(i ) + a32 * f(ip1) + a33 * f(ip2)
! calculate the left state
!
fl(i) = (wl * ql + wr * qr) + wc * qc
! prepare coefficients of the tridiagonal system
!
a(i,1) = 0.0d+00
b(i,1) = 1.0d+00
c(i,1) = 0.0d+00
r(i,1) = fl(i)
end do ! i = n - ng, n - 1
a(n,1) = 0.0d+00
b(n,1) = 1.0d+00
c(n,1) = 0.0d+00
r(n,1) = f(n)
! interpolate ghost zones using explicit solver (right-side reconstruction)
!
do i = 2, ng + 1
! prepare neighbour indices
!
im2 = max(1, i - 2)
im1 = i - 1
ip1 = i + 1
ip2 = i + 2
! normalize weights
!
wl = dl * ar(i,2)
wc = dc * ac(i,2)
wr = dr * al(i,2)
ww = (wl + wr) + wc
wl = wl / ww
wr = wr / ww
wc = 1.0d+00 - (wl + wr)
! calculate the interpolations of the right state
!
ql = a11 * f(ip2) + a12 * f(ip1) + a13 * f(i )
qc = a21 * f(ip1) + a22 * f(i ) + a23 * f(im1)
qr = a31 * f(i ) + a32 * f(im1) + a33 * f(im2)
! calculate the right state
!
fr(i) = (wl * ql + wr * qr) + wc * qc
! prepare coefficients of the tridiagonal system
!
a(i,2) = 0.0d+00
b(i,2) = 1.0d+00
c(i,2) = 0.0d+00
r(i,2) = fr(i)
end do ! i = 2, ng + 1
a(1,2) = 0.0d+00
b(1,2) = 1.0d+00
c(1,2) = 0.0d+00
r(1,2) = f(1)
! interpolate ghost zones using explicit solver (right-side reconstruction)
!
do i = n - ng + 1, n - 1
! prepare neighbour indices
!
im2 = i - 2
im1 = i - 1
ip1 = i + 1
ip2 = min(n, i + 2)
! normalize weights
!
wl = dl * ar(i,2)
wc = dc * ac(i,2)
wr = dr * al(i,2)
ww = (wl + wr) + wc
wl = wl / ww
wr = wr / ww
wc = 1.0d+00 - (wl + wr)
! calculate the interpolations of the right state
!
ql = a11 * f(ip2) + a12 * f(ip1) + a13 * f(i )
qc = a21 * f(ip1) + a22 * f(i ) + a23 * f(im1)
qr = a31 * f(i ) + a32 * f(im1) + a33 * f(im2)
! calculate the right state
!
fr(i) = (wl * ql + wr * qr) + wc * qc
! prepare coefficients of the tridiagonal system
!
a(i,2) = 0.0d+00
b(i,2) = 1.0d+00
c(i,2) = 0.0d+00
r(i,2) = fr(i)
end do ! i = n - ng + 1, n - 1
a(n,2) = 0.0d+00
b(n,2) = 1.0d+00
c(n,2) = 0.0d+00
r(n,2) = 0.5d+00 * (f(n-1) + f(n))
! solve the tridiagonal system of equations for the left-side interpolation
!
call tridiag(n, a(1:n,1), b(1:n,1), c(1:n,1), r(1:n,1), u(1:n))
! substitute the left-side values
!
fl(1:n ) = u(1:n)
! solve the tridiagonal system of equations for the left-side interpolation
!
call tridiag(n, a(1:n,2), b(1:n,2), c(1:n,2), r(1:n,2), u(1:n))
! substitute the right-side values
!
fr(1:n-1) = u(2:n)
! update the interpolation of the first and last points
!
i = n - 1
fl(1) = 0.5d+00 * (f(1) + f(2))
fr(i) = 0.5d+00 * (f(i) + f(n))
fl(n) = f(n)
fr(n) = f(n)
!-------------------------------------------------------------------------------
!
end subroutine reconstruct_crweno5ns
!
!===============================================================================
!
! subroutine RECONSTRUCT_MP5:
! --------------------------
!
! Subroutine reconstructs the interface states using the fifth order
! Monotonicity Preserving (MP) method.
!
! Arguments are described in subroutine reconstruct().
!
! References:
!
! [1] Suresh, A. & Huynh, H. T.,
! "Accurate Monotonicity-Preserving Schemes with Runge-Kutta
! Time Stepping"
! Journal on Computational Physics,
! 1997, vol. 136, pp. 83-99,
! http://dx.doi.org/10.1006/jcph.1997.5745
! [2] He, ZhiWei, Li, XinLiang, Fu, DeXun, & Ma, YanWen,
! "A 5th order monotonicity-preserving upwind compact difference
! scheme",
! Science China Physics, Mechanics and Astronomy,
! Volume 54, Issue 3, pp. 511-522,
! http://dx.doi.org/10.1007/s11433-010-4220-x
!
!===============================================================================
!
subroutine reconstruct_mp5(n, h, f, fl, fr)
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
integer , intent(in) :: n
real(kind=8) , intent(in) :: h
real(kind=8), dimension(n), intent(in) :: f
real(kind=8), dimension(n), intent(out) :: fl, fr
! local variables
!
integer :: i, im1, ip1, im2, ip2
real(kind=8) :: df, ds, dc0, dc4, dm1, dp1, dml, dmr
real(kind=8) :: flc, fmd, fmp, fmn, fmx, ful
real(kind=8) :: sigma
! local arrays for derivatives
!
real(kind=8), dimension(n) :: dfm, dfp
!
!-------------------------------------------------------------------------------
!
! calculate the left and right derivatives
!
do i = 1, n - 1
ip1 = i + 1
dfp(i ) = f(ip1) - f(i)
dfm(ip1) = dfp(i)
end do
dfm(1) = dfp(1)
dfp(n) = dfm(n)
! obtain the face values using high order interpolation
!
do i = 2, n - 1
im2 = max(1, i - 2)
im1 = i - 1
ip1 = i + 1
ip2 = min(n, i + 2)
fl(i) = (4.7d+01 * f(i ) + (2.7d+01 * f(ip1) - 1.3d+01 * f(im1)) &
- (3.0d+00 * f(ip2) - 2.0d+00 * f(im2))) &
/ 6.0d+01
fr(i) = (4.7d+01 * f(i ) + (2.7d+01 * f(im1) - 1.3d+01 * f(ip1)) &
- (3.0d+00 * f(im2) - 2.0d+00 * f(ip2))) &
/ 6.0d+01
end do ! i = 2, n - 1
! apply monotonicity preserving limiting
!
do i = 2, n - 1
im1 = i - 1
ip1 = i + 1
if (dfm(i) * dfp(i) >= 0.0d+00) then
sigma = kappa
else
sigma = kbeta
end if
! get the limiting condition for the left state
!
df = sigma * dfm(i)
fmp = f(i) + minmod(dfp(i), df)
ds = (fl(i) - f(i)) * (fl(i) - fmp)
! limit the left state
!
if (ds > eps) then
dm1 = dfp(im1) - dfm(im1)
dc0 = dfp(i ) - dfm(i )
dp1 = dfp(ip1) - dfm(ip1)
dc4 = 4.0d+00 * dc0
dml = 0.5d+00 * minmod4(dc4 - dm1, 4.0d+00 * dm1 - dc0, dc0, dm1)
dmr = 0.5d+00 * minmod4(dc4 - dp1, 4.0d+00 * dp1 - dc0, dc0, dp1)
fmd = f(i) + 0.5d+00 * dfp(i) - dmr
ful = f(i) + df
flc = f(i) + 0.5d+00 * df + dml
fmx = max(min(f(i), f(ip1), fmd), min(f(i), ful, flc))
fmn = min(max(f(i), f(ip1), fmd), max(f(i), ful, flc))
fl(i) = median(fl(i), fmn, fmx)
end if
! get the limiting condition for the right state
!
df = sigma * dfp(i)
fmp = f(i) - minmod(dfm(i), df)
ds = (fr(i) - f(i)) * (fr(i) - fmp)
! limit the right state
!
if (ds > eps) then
dm1 = dfp(im1) - dfm(im1)
dc0 = dfp(i ) - dfm(i )
dp1 = dfp(ip1) - dfm(ip1)
dc4 = 4.0d+00 * dc0
dml = 0.5d+00 * minmod4(dc4 - dm1, 4.0d+00 * dm1 - dc0, dc0, dm1)
dmr = 0.5d+00 * minmod4(dc4 - dp1, 4.0d+00 * dp1 - dc0, dc0, dp1)
fmd = f(i) - 0.5d+00 * dfm(i) - dml
ful = f(i) - df
flc = f(i) - 0.5d+00 * df + dmr
fmx = max(min(f(i), f(im1), fmd), min(f(i), ful, flc))
fmn = min(max(f(i), f(im1), fmd), max(f(i), ful, flc))
fr(i) = median(fr(i), fmn, fmx)
end if
! shift the right state
!
fr(im1) = fr(i)
end do ! n = 2, n - 1
! update the interpolation of the first and last points
!
i = n - 1
fl(1) = 0.5d+00 * (f(1) + f(2))
fr(i) = 0.5d+00 * (f(i) + f(n))
fl(n) = f(n)
fr(n) = f(n)
!-------------------------------------------------------------------------------
!
end subroutine reconstruct_mp5
!
!===============================================================================
!
! subroutine RECONSTRUCT_CRMP5:
! ----------------------------
!
! Subroutine reconstructs the interface states using the fifth order
! Compact Reconstruction Monotonicity Preserving (CRMP) method.
!
! Arguments are described in subroutine reconstruct().
!
! References:
!
! [1] Suresh, A. & Huynh, H. T.,
! "Accurate Monotonicity-Preserving Schemes with Runge-Kutta
! Time Stepping"
! Journal on Computational Physics,
! 1997, vol. 136, pp. 83-99,
! http://dx.doi.org/10.1006/jcph.1997.5745
! [2] He, ZhiWei, Li, XinLiang, Fu, DeXun, & Ma, YanWen,
! "A 5th order monotonicity-preserving upwind compact difference
! scheme",
! Science China Physics, Mechanics and Astronomy,
! Volume 54, Issue 3, pp. 511-522,
! http://dx.doi.org/10.1007/s11433-010-4220-x
!
!===============================================================================
!
subroutine reconstruct_crmp5(n, h, f, fl, fr)
! include external procedures
!
use algebra , only : tridiag
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
integer , intent(in) :: n
real(kind=8) , intent(in) :: h
real(kind=8), dimension(n), intent(in) :: f
real(kind=8), dimension(n), intent(out) :: fl, fr
! local variables
!
integer :: i, im1, ip1, im2, ip2
real(kind=8) :: df, ds, dc0, dc4, dm1, dp1, dml, dmr
real(kind=8) :: flc, fmd, fmp, fmn, fmx, ful
real(kind=8) :: sigma
! local arrays for derivatives
!
real(kind=8), dimension(n) :: dfm, dfp
real(kind=8), dimension(n) :: u
real(kind=8), dimension(n,2) :: a, b, c, r
!
!-------------------------------------------------------------------------------
!
! calculate the left and right derivatives
!
do i = 1, n - 1
ip1 = i + 1
dfp(i ) = f(ip1) - f(i)
dfm(ip1) = dfp(i)
end do
dfm(1) = dfp(1)
dfp(n) = dfm(n)
! prepare the tridiagonal system coefficients for the interior
!
do i = ng, n - ng + 1
im1 = i - 1
ip1 = i + 1
a(i,1) = 3.0d-01
b(i,1) = 6.0d-01
c(i,1) = 1.0d-01
a(i,2) = 1.0d-01
b(i,2) = 6.0d-01
c(i,2) = 3.0d-01
r(i,1) = (f(im1) + 1.9d+01 * f(i ) + 1.0d+01 * f(ip1)) / 3.0d+01
r(i,2) = (f(ip1) + 1.9d+01 * f(i ) + 1.0d+01 * f(im1)) / 3.0d+01
end do ! i = ng, n - ng + 1
! interpolate ghost zones using explicit method (left-side reconstruction)
!
do i = 2, ng
im2 = max(1, i - 2)
im1 = i - 1
ip1 = i + 1
ip2 = i + 2
a(i,1) = 0.0d+00
b(i,1) = 1.0d+00
c(i,1) = 0.0d+00
r(i,1) = (4.7d+01 * f(i ) + (2.7d+01 * f(ip1) - 1.3d+01 * f(im1)) &
- (3.0d+00 * f(ip2) - 2.0d+00 * f(im2))) &
/ 6.0d+01
end do ! i = 2, ng
a(1,1) = 0.0d+00
b(1,1) = 1.0d+00
c(1,1) = 0.0d+00
r(1,1) = 0.5d+00 * (f(1) + f(2))
do i = n - ng, n - 1
im2 = i - 2
im1 = i - 1
ip1 = i + 1
ip2 = min(n, i + 2)
a(i,1) = 0.0d+00
b(i,1) = 1.0d+00
c(i,1) = 0.0d+00
r(i,1) = (4.7d+01 * f(i ) + (2.7d+01 * f(ip1) - 1.3d+01 * f(im1)) &
- (3.0d+00 * f(ip2) - 2.0d+00 * f(im2))) &
/ 6.0d+01
end do ! i = n - ng, n - 1
a(n,1) = 0.0d+00
b(n,1) = 1.0d+00
c(n,1) = 0.0d+00
r(n,1) = f(n)
! interpolate ghost zones using explicit method (right-side reconstruction)
!
do i = 2, ng + 1
im2 = max(1, i - 2)
im1 = i - 1
ip1 = i + 1
ip2 = i + 2
a(i,2) = 0.0d+00
b(i,2) = 1.0d+00
c(i,2) = 0.0d+00
r(i,2) = (4.7d+01 * f(i ) + (2.7d+01 * f(im1) - 1.3d+01 * f(ip1)) &
- (3.0d+00 * f(im2) - 2.0d+00 * f(ip2))) &
/ 6.0d+01
end do ! i = 2, ng + 1
a(1,2) = 0.0d+00
b(1,2) = 1.0d+00
c(1,2) = 0.0d+00
r(1,2) = f(1)
do i = n - ng + 1, n - 1
im2 = i - 2
im1 = i - 1
ip1 = i + 1
ip2 = min(n, i + 2)
a(i,2) = 0.0d+00
b(i,2) = 1.0d+00
c(i,2) = 0.0d+00
r(i,2) = (4.7d+01 * f(i ) + (2.7d+01 * f(im1) - 1.3d+01 * f(ip1)) &
- (3.0d+00 * f(im2) - 2.0d+00 * f(ip2))) &
/ 6.0d+01
end do ! i = n - ng + 1, n - 1
a(n,2) = 0.0d+00
b(n,2) = 1.0d+00
c(n,2) = 0.0d+00
r(n,2) = 0.5d+00 * (f(n-1) + f(n))
! solve the tridiagonal system of equations for the left-side interpolation
!
call tridiag(n, a(1:n,1), b(1:n,1), c(1:n,1), r(1:n,1), u(1:n))
! apply the monotonicity preserving limiting
!
do i = 2, n - 1
im1 = i - 1
ip1 = i + 1
if (dfm(i) * dfp(i) >= 0.0d+00) then
sigma = kappa
else
sigma = kbeta
end if
df = sigma * dfm(i)
fmp = f(i) + minmod(dfp(i), df)
ds = (u(i) - f(i)) * (u(i) - fmp)
if (ds <= eps) then
fl(i) = u(i)
else
dm1 = dfp(im1) - dfm(im1)
dc0 = dfp(i ) - dfm(i )
dp1 = dfp(ip1) - dfm(ip1)
dc4 = 4.0d+00 * dc0
dml = 0.5d+00 * minmod4(dc4 - dm1, 4.0d+00 * dm1 - dc0, dc0, dm1)
dmr = 0.5d+00 * minmod4(dc4 - dp1, 4.0d+00 * dp1 - dc0, dc0, dp1)
fmd = f(i) + 0.5d+00 * dfp(i) - dmr
ful = f(i) + df
flc = f(i) + 0.5d+00 * df + dml
fmx = max(min(f(i), f(ip1), fmd), min(f(i), ful, flc))
fmn = min(max(f(i), f(ip1), fmd), max(f(i), ful, flc))
fl(i) = median(u(i), fmn, fmx)
end if
end do ! i = 2, n - 1
! solve the tridiagonal system of equations for the right-side interpolation
!
call tridiag(n, a(1:n,2), b(1:n,2), c(1:n,2), r(1:n,2), u(1:n))
! apply the monotonicity preserving limiting
!
do i = 2, n - 1
im1 = i - 1
ip1 = i + 1
if (dfm(i) * dfp(i) >= 0.0d+00) then
sigma = kappa
else
sigma = kbeta
end if
df = sigma * dfp(i)
fmp = f(i) - minmod(dfm(i), df)
ds = (u(i) - f(i)) * (u(i) - fmp)
if (ds <= eps) then
fr(i) = u(i)
else
dm1 = dfp(im1) - dfm(im1)
dc0 = dfp(i ) - dfm(i )
dp1 = dfp(ip1) - dfm(ip1)
dc4 = 4.0d+00 * dc0
dml = 0.5d+00 * minmod4(dc4 - dm1, 4.0d+00 * dm1 - dc0, dc0, dm1)
dmr = 0.5d+00 * minmod4(dc4 - dp1, 4.0d+00 * dp1 - dc0, dc0, dp1)
fmd = f(i) - 0.5d+00 * dfm(i) - dml
ful = f(i) - df
flc = f(i) - 0.5d+00 * df + dmr
fmx = max(min(f(i), f(im1), fmd), min(f(i), ful, flc))
fmn = min(max(f(i), f(im1), fmd), max(f(i), ful, flc))
fr(i) = median(u(i), fmn, fmx)
end if
! shift the right state
!
fr(im1) = fr(i)
end do ! i = 2, n - 1
! update the interpolation of the first and last points
!
i = n - 1
fl(1) = 0.5d+00 * (f(1) + f(2))
fr(i) = 0.5d+00 * (f(i) + f(n))
fl(n) = f(n)
fr(n) = f(n)
!-------------------------------------------------------------------------------
!
end subroutine reconstruct_crmp5
!
!===============================================================================
!
! subroutine RECONSTRUCT_CRMP5LD:
! ------------------------------
!
! Subroutine reconstructs the interface states using the fifth order
! Low-Dissipation Compact Reconstruction Monotonicity Preserving (CRMP)
! method.
!
! Arguments are described in subroutine reconstruct().
!
! References:
!
! [1] Suresh, A. & Huynh, H. T.,
! "Accurate Monotonicity-Preserving Schemes with Runge-Kutta
! Time Stepping"
! Journal on Computational Physics,
! 1997, vol. 136, pp. 83-99,
! http://dx.doi.org/10.1006/jcph.1997.5745
! [2] He, ZhiWei, Li, XinLiang, Fu, DeXun, & Ma, YanWen,
! "A 5th order monotonicity-preserving upwind compact difference
! scheme",
! Science China Physics, Mechanics and Astronomy,
! Volume 54, Issue 3, pp. 511-522,
! http://dx.doi.org/10.1007/s11433-010-4220-x
! [3] Ghosh, D. & Baeder, J.,
! "Compact Reconstruction Schemes With Weighted ENO Limiting For
! Hyperbolic Conservation Laws",
! SIAM Journal on Scientific Computing,
! 2012, vol. 34, no. 3, pp. A1678-A1705,
! http://dx.doi.org/10.1137/110857659
!
!===============================================================================
!
subroutine reconstruct_crmp5ld(n, h, f, fl, fr)
! include external procedures
!
use algebra , only : tridiag
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
integer , intent(in) :: n
real(kind=8) , intent(in) :: h
real(kind=8), dimension(n), intent(in) :: f
real(kind=8), dimension(n), intent(out) :: fl, fr
! local variables
!
integer :: i, im1, ip1, im2, ip2
real(kind=8) :: df, ds, dc0, dc4, dm1, dp1, dml, dmr
real(kind=8) :: flc, fmd, fmp, fmn, fmx, ful
real(kind=8) :: sigma
! local arrays for derivatives
!
real(kind=8), dimension(n) :: dfm, dfp
real(kind=8), dimension(n) :: u
real(kind=8), dimension(n,2) :: a, b, c, r
!
!-------------------------------------------------------------------------------
!
! calculate the left and right derivatives
!
do i = 1, n - 1
ip1 = i + 1
dfp(i ) = f(ip1) - f(i)
dfm(ip1) = dfp(i)
end do
dfm(1) = dfp(1)
dfp(n) = dfm(n)
! prepare the tridiagonal system coefficients for the interior (eq. 3.6 in [3])
!
do i = ng, n - ng + 1
im2 = i - 2
im1 = i - 1
ip1 = i + 1
ip2 = i + 2
a(i,1) = 2.5d-01
b(i,1) = 6.0d-01
c(i,1) = 1.5d-01
a(i,2) = 1.5d-01
b(i,2) = 6.0d-01
c(i,2) = 2.5d-01
r(i,1) = (3.0d+00 * f(im1) + 6.7d+01 * f(i ) &
+ 4.9d+01 * f(ip1) + f(ip2)) / 1.2d+02
r(i,2) = (3.0d+00 * f(ip1) + 6.7d+01 * f(i ) &
+ 4.9d+01 * f(im1) + f(im2)) / 1.2d+02
end do ! i = ng, n - ng + 1
! interpolate ghost zones using explicit method (left-side reconstruction)
!
do i = 2, ng
im2 = max(1, i - 2)
im1 = i - 1
ip1 = i + 1
ip2 = i + 2
a(i,1) = 0.0d+00
b(i,1) = 1.0d+00
c(i,1) = 0.0d+00
r(i,1) = (4.7d+01 * f(i ) + (2.7d+01 * f(ip1) - 1.3d+01 * f(im1)) &
- (3.0d+00 * f(ip2) - 2.0d+00 * f(im2))) &
/ 6.0d+01
end do ! i = 2, ng
a(1,1) = 0.0d+00
b(1,1) = 1.0d+00
c(1,1) = 0.0d+00
r(1,1) = 0.5d+00 * (f(1) + f(2))
do i = n - ng, n - 1
im2 = i - 2
im1 = i - 1
ip1 = i + 1
ip2 = min(n, i + 2)
a(i,1) = 0.0d+00
b(i,1) = 1.0d+00
c(i,1) = 0.0d+00
r(i,1) = (4.7d+01 * f(i ) + (2.7d+01 * f(ip1) - 1.3d+01 * f(im1)) &
- (3.0d+00 * f(ip2) - 2.0d+00 * f(im2))) &
/ 6.0d+01
end do ! i = n - ng, n - 1
a(n,1) = 0.0d+00
b(n,1) = 1.0d+00
c(n,1) = 0.0d+00
r(n,1) = f(n)
! interpolate ghost zones using explicit method (right-side reconstruction)
!
do i = 2, ng + 1
im2 = max(1, i - 2)
im1 = i - 1
ip1 = i + 1
ip2 = i + 2
a(i,2) = 0.0d+00
b(i,2) = 1.0d+00
c(i,2) = 0.0d+00
r(i,2) = (4.7d+01 * f(i ) + (2.7d+01 * f(im1) - 1.3d+01 * f(ip1)) &
- (3.0d+00 * f(im2) - 2.0d+00 * f(ip2))) &
/ 6.0d+01
end do ! i = 2, ng + 1
a(1,2) = 0.0d+00
b(1,2) = 1.0d+00
c(1,2) = 0.0d+00
r(1,2) = f(1)
do i = n - ng + 1, n - 1
im2 = i - 2
im1 = i - 1
ip1 = i + 1
ip2 = min(n, i + 2)
a(i,2) = 0.0d+00
b(i,2) = 1.0d+00
c(i,2) = 0.0d+00
r(i,2) = (4.7d+01 * f(i ) + (2.7d+01 * f(im1) - 1.3d+01 * f(ip1)) &
- (3.0d+00 * f(im2) - 2.0d+00 * f(ip2))) &
/ 6.0d+01
end do ! i = n - ng + 1, n - 1
a(n,2) = 0.0d+00
b(n,2) = 1.0d+00
c(n,2) = 0.0d+00
r(n,2) = 0.5d+00 * (f(n-1) + f(n))
! solve the tridiagonal system of equations for the left-side interpolation
!
call tridiag(n, a(1:n,1), b(1:n,1), c(1:n,1), r(1:n,1), u(1:n))
! apply the monotonicity preserving limiting
!
do i = 2, n - 1
im1 = i - 1
ip1 = i + 1
if (dfm(i) * dfp(i) >= 0.0d+00) then
sigma = kappa
else
sigma = kbeta
end if
df = sigma * dfm(i)
fmp = f(i) + minmod(dfp(i), df)
ds = (u(i) - f(i)) * (u(i) - fmp)
if (ds <= eps) then
fl(i) = u(i)
else
dm1 = dfp(im1) - dfm(im1)
dc0 = dfp(i ) - dfm(i )
dp1 = dfp(ip1) - dfm(ip1)
dc4 = 4.0d+00 * dc0
dml = 0.5d+00 * minmod4(dc4 - dm1, 4.0d+00 * dm1 - dc0, dc0, dm1)
dmr = 0.5d+00 * minmod4(dc4 - dp1, 4.0d+00 * dp1 - dc0, dc0, dp1)
fmd = f(i) + 0.5d+00 * dfp(i) - dmr
ful = f(i) + df
flc = f(i) + 0.5d+00 * df + dml
fmx = max(min(f(i), f(ip1), fmd), min(f(i), ful, flc))
fmn = min(max(f(i), f(ip1), fmd), max(f(i), ful, flc))
fl(i) = median(u(i), fmn, fmx)
end if
end do ! i = 2, n - 1
! solve the tridiagonal system of equations for the right-side interpolation
!
call tridiag(n, a(1:n,2), b(1:n,2), c(1:n,2), r(1:n,2), u(1:n))
! apply the monotonicity preserving limiting
!
do i = 2, n - 1
im1 = i - 1
ip1 = i + 1
if (dfm(i) * dfp(i) >= 0.0d+00) then
sigma = kappa
else
sigma = kbeta
end if
df = sigma * dfp(i)
fmp = f(i) - minmod(dfm(i), df)
ds = (u(i) - f(i)) * (u(i) - fmp)
if (ds <= eps) then
fr(i) = u(i)
else
dm1 = dfp(im1) - dfm(im1)
dc0 = dfp(i ) - dfm(i )
dp1 = dfp(ip1) - dfm(ip1)
dc4 = 4.0d+00 * dc0
dml = 0.5d+00 * minmod4(dc4 - dm1, 4.0d+00 * dm1 - dc0, dc0, dm1)
dmr = 0.5d+00 * minmod4(dc4 - dp1, 4.0d+00 * dp1 - dc0, dc0, dp1)
fmd = f(i) - 0.5d+00 * dfm(i) - dml
ful = f(i) - df
flc = f(i) - 0.5d+00 * df + dmr
fmx = max(min(f(i), f(im1), fmd), min(f(i), ful, flc))
fmn = min(max(f(i), f(im1), fmd), max(f(i), ful, flc))
fr(i) = median(u(i), fmn, fmx)
end if
! shift the right state
!
fr(im1) = fr(i)
end do ! i = 2, n - 1
! update the interpolation of the first and last points
!
i = n - 1
fl(1) = 0.5d+00 * (f(1) + f(2))
fr(i) = 0.5d+00 * (f(i) + f(n))
fl(n) = f(n)
fr(n) = f(n)
!-------------------------------------------------------------------------------
!
end subroutine reconstruct_crmp5ld
!
!===============================================================================
!
! subroutine PREPARE_GP:
! ---------------------
!
! Subroutine prepares matrixes for the Gaussian Process (GP) method.
!
!===============================================================================
!
subroutine prepare_gp()
! include external procedures
!
use algebra , only : invert
use constants , only : pi
use error , only : print_error
! local variables are not implicit by default
!
implicit none
! local variables
!
logical :: flag
integer :: i, j
real(kind=16) :: sig, z, fc
! local arrays for derivatives
!
real(kind=16), dimension(:,:), allocatable :: cov, mgp
real(kind=16), dimension(:) , allocatable :: xgp
!
!-------------------------------------------------------------------------------
!
! calculate normal distribution sigma
!
sig = sqrt(2.0d+00) * sgp
! allocate the convariance matrix and interpolation position vector
!
allocate(cov(ngp,ngp))
allocate(mgp(ngp,ngp))
allocate(xgp(ngp))
! prepare the covariance matrix
!
fc = 0.5d+00 * sqrt(pi) * sig
do i = 1, ngp
do j = 1, ngp
z = (1.0d+00 * (i - j) + 0.5d+00) / sig
cov(i,j) = erf(z)
z = (1.0d+00 * (i - j) - 0.5d+00) / sig
cov(i,j) = fc * (cov(i,j) - erf(z))
end do
end do
! invert the matrix
!
call invert(ngp, cov(1:ngp,1:ngp), mgp(1:ngp,1:ngp), flag)
! prepare the interpolation position vector
!
do i = 1, ngp
z = (0.5d+00 * (2 * i - 2 - ngp)) / sig
xgp(i) = exp(- z**2)
end do
! prepare the interpolation coefficients vector
!
cgp(1:ngp) = matmul(xgp(1:ngp), mgp(1:ngp,1:ngp))
! deallocate the convariance matrix and interpolation position vector
!
deallocate(cov)
deallocate(mgp)
deallocate(xgp)
! check if the matrix was inverted successfully
!
if (.not. flag) then
call print_error("interpolations::prepare_gp" &
, "Could not invert covariance matrix!")
stop
end if
!-------------------------------------------------------------------------------
!
end subroutine prepare_gp
!
!===============================================================================
!
! subroutine RECONSTRUCT_GP:
! -------------------------
!
! Subroutine reconstructs the interface states using the fifth order
! Gaussian Process (GP) method.
!
! Arguments are described in subroutine reconstruct().
!
!===============================================================================
!
subroutine reconstruct_gp(n, h, f, fl, fr)
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
integer , intent(in) :: n
real(kind=8) , intent(in) :: h
real(kind=8), dimension(n), intent(in) :: f
real(kind=8), dimension(n), intent(out) :: fl, fr
! local variables
!
integer :: i, im1, ip1, im2, ip2, j, m
real(kind=8) :: df, ds, dc0, dc4, dm1, dp1, dml, dmr
real(kind=8) :: flc, fmd, fmp, fmn, fmx, ful
real(kind=8) :: sigma
! local arrays for derivatives
!
real(kind=8), dimension(n) :: dfm, dfp
!
!-------------------------------------------------------------------------------
!
! calculate the left and right derivatives
!
do i = 1, n - 1
ip1 = i + 1
dfp(i ) = f(ip1) - f(i)
dfm(ip1) = dfp(i)
end do
dfm(1) = dfp(1)
dfp(n) = dfm(n)
! obtain the face values using high order interpolation
!
m = (ngp - 1) / 2
do i = 2, m
im2 = max(1, i - 2)
im1 = i - 1
ip1 = i + 1
ip2 = min(n, i + 2)
fl(i) = (4.7d+01 * f(i ) + (2.7d+01 * f(ip1) - 1.3d+01 * f(im1)) &
- (3.0d+00 * f(ip2) - 2.0d+00 * f(im2))) &
/ 6.0d+01
fr(i) = (4.7d+01 * f(i ) + (2.7d+01 * f(im1) - 1.3d+01 * f(ip1)) &
- (3.0d+00 * f(im2) - 2.0d+00 * f(ip2))) &
/ 6.0d+01
end do ! i = 2, m
do i = n - m + 1, n - 1
im2 = max(1, i - 2)
im1 = i - 1
ip1 = i + 1
ip2 = min(n, i + 2)
fl(i) = (4.7d+01 * f(i ) + (2.7d+01 * f(ip1) - 1.3d+01 * f(im1)) &
- (3.0d+00 * f(ip2) - 2.0d+00 * f(im2))) &
/ 6.0d+01
fr(i) = (4.7d+01 * f(i ) + (2.7d+01 * f(im1) - 1.3d+01 * f(ip1)) &
- (3.0d+00 * f(im2) - 2.0d+00 * f(ip2))) &
/ 6.0d+01
end do ! i = n - m + 1, n - 1
do i = 1 + m, n - m
im2 = i - m
ip2 = i + m
fl(i) = sum(cgp(1:ngp) * f(im2:ip2 ))
fr(i) = sum(cgp(1:ngp) * f(ip2:im2:-1))
end do ! i = 1 + m, n - m
! apply monotonicity preserving limiting
!
do i = 2, n - 1
im1 = i - 1
ip1 = i + 1
if (dfm(i) * dfp(i) >= 0.0d+00) then
sigma = kappa
else
sigma = kbeta
end if
! get the limiting condition for the left state
!
df = sigma * dfm(i)
fmp = f(i) + minmod(dfp(i), df)
ds = (fl(i) - f(i)) * (fl(i) - fmp)
! limit the left state
!
if (ds > eps) then
dm1 = dfp(im1) - dfm(im1)
dc0 = dfp(i ) - dfm(i )
dp1 = dfp(ip1) - dfm(ip1)
dc4 = 4.0d+00 * dc0
dml = 0.5d+00 * minmod4(dc4 - dm1, 4.0d+00 * dm1 - dc0, dc0, dm1)
dmr = 0.5d+00 * minmod4(dc4 - dp1, 4.0d+00 * dp1 - dc0, dc0, dp1)
fmd = f(i) + 0.5d+00 * dfp(i) - dmr
ful = f(i) + df
flc = f(i) + 0.5d+00 * df + dml
fmx = max(min(f(i), f(ip1), fmd), min(f(i), ful, flc))
fmn = min(max(f(i), f(ip1), fmd), max(f(i), ful, flc))
fl(i) = median(fl(i), fmn, fmx)
end if
! get the limiting condition for the right state
!
df = sigma * dfp(i)
fmp = f(i) - minmod(dfm(i), df)
ds = (fr(i) - f(i)) * (fr(i) - fmp)
! limit the right state
!
if (ds > eps) then
dm1 = dfp(im1) - dfm(im1)
dc0 = dfp(i ) - dfm(i )
dp1 = dfp(ip1) - dfm(ip1)
dc4 = 4.0d+00 * dc0
dml = 0.5d+00 * minmod4(dc4 - dm1, 4.0d+00 * dm1 - dc0, dc0, dm1)
dmr = 0.5d+00 * minmod4(dc4 - dp1, 4.0d+00 * dp1 - dc0, dc0, dp1)
fmd = f(i) - 0.5d+00 * dfm(i) - dml
ful = f(i) - df
flc = f(i) - 0.5d+00 * df + dmr
fmx = max(min(f(i), f(im1), fmd), min(f(i), ful, flc))
fmn = min(max(f(i), f(im1), fmd), max(f(i), ful, flc))
fr(i) = median(fr(i), fmn, fmx)
end if
! shift the right state
!
fr(im1) = fr(i)
end do ! n = 2, n - 1
! update the interpolation of the first and last points
!
i = n - 1
fl(1) = 0.5d+00 * (f(1) + f(2))
fr(i) = 0.5d+00 * (f(i) + f(n))
fl(n) = f(n)
fr(n) = f(n)
!-------------------------------------------------------------------------------
!
end subroutine reconstruct_gp
!
!===============================================================================
!
! function LIMITER_ZERO:
! ---------------------
!
! Function returns zero.
!
! Arguments:
!
! x - scaling factor;
! a, b - the input values;
!
!===============================================================================
!
function limiter_zero(x, a, b) result(c)
! local variables are not implicit by default
!
implicit none
! input arguments
!
real(kind=8), intent(in) :: x, a, b
real(kind=8) :: c
!
!-------------------------------------------------------------------------------
!
c = 0.0d+00
!-------------------------------------------------------------------------------
!
end function limiter_zero
!
!===============================================================================
!
! function LIMITER_MINMOD:
! -----------------------
!
! Function returns the minimum module value among two arguments using
! minmod limiter.
!
! Arguments:
!
! x - scaling factor;
! a, b - the input values;
!
!===============================================================================
!
function limiter_minmod(x, a, b) result(c)
! local variables are not implicit by default
!
implicit none
! input arguments
!
real(kind=8), intent(in) :: x, a, b
real(kind=8) :: c
!
!-------------------------------------------------------------------------------
!
c = 0.5d+00 * (sign(x, a) + sign(x, b)) * min(abs(a), abs(b))
!-------------------------------------------------------------------------------
!
end function limiter_minmod
!
!===============================================================================
!
! function LIMITER_MONOTONIZED_CENTRAL:
! ------------------------------------
!
! Function returns the minimum module value among two arguments using
! the monotonized central TVD limiter.
!
! Arguments:
!
! x - scaling factor;
! a, b - the input values;
!
!===============================================================================
!
function limiter_monotonized_central(x, a, b) result(c)
! local variables are not implicit by default
!
implicit none
! input arguments
!
real(kind=8), intent(in) :: x, a, b
real(kind=8) :: c
!
!-------------------------------------------------------------------------------
!
c = (sign(x, a) + sign(x, b)) * min(abs(a), abs(b), 2.5d-01 * abs(a + b))
!-------------------------------------------------------------------------------
!
end function limiter_monotonized_central
!
!===============================================================================
!
! function LIMITER_SUPERBEE:
! -------------------------
!
! Function returns the minimum module value among two arguments using
! superbee limiter.
!
! Arguments:
!
! x - scaling factor;
! a, b - the input values;
!
!===============================================================================
!
function limiter_superbee(x, a, b) result(c)
! local variables are not implicit by default
!
implicit none
! input arguments
!
real(kind=8), intent(in) :: x, a, b
real(kind=8) :: c
!
!-------------------------------------------------------------------------------
!
c = 0.5d+00 * (sign(x, a) + sign(x, b)) &
* max(min(2.0d+00 * abs(a), abs(b)), min(abs(a), 2.0d+00 * abs(b)))
!-------------------------------------------------------------------------------
!
end function limiter_superbee
!
!===============================================================================
!
! function LIMITER_VANLEER:
! ------------------------
!
! Function returns the minimum module value among two arguments using
! van Leer's limiter.
!
! Arguments:
2011-03-25 01:05:58 -03:00
!
! x - scaling factor;
! a, b - the input values;
!
!===============================================================================
!
function limiter_vanleer(x, a, b) result(c)
! local variables are not implicit by default
!
implicit none
! input arguments
!
real(kind=8), intent(in) :: x, a, b
real(kind=8) :: c
!
!-------------------------------------------------------------------------------
!
c = a * b
if (c > 0.0d+00) then
c = 2.0d+00 * x * c / (a + b)
else
c = 0.0d+00
end if
!-------------------------------------------------------------------------------
!
end function limiter_vanleer
!
!===============================================================================
!
! function LIMITER_VANALBADA:
! --------------------------
!
! Function returns the minimum module value among two arguments using
! van Albada's limiter.
!
! Arguments:
!
! x - scaling factor;
! a, b - the input values;
!
!===============================================================================
!
function limiter_vanalbada(x, a, b) result(c)
! local variables are not implicit by default
!
implicit none
! input arguments
!
real(kind=8), intent(in) :: x, a, b
real(kind=8) :: c
!
!-------------------------------------------------------------------------------
!
c = x * a * b * (a + b) / max(eps, a * a + b * b)
2011-06-09 14:12:33 -03:00
!-------------------------------------------------------------------------------
!
end function limiter_vanalbada
!
!===============================================================================
!
! function MINMOD:
! ===============
!
! Function returns the minimum module value among two arguments.
!
! Arguments:
!
! a, b - the input values;
!
!===============================================================================
!
real(kind=8) function minmod(a, b)
! local variables are not implicit by default
!
implicit none
! input arguments
!
real(kind=8), intent(in) :: a, b
!
!-------------------------------------------------------------------------------
!
minmod = (sign(0.5d+00, a) + sign(0.5d+00, b)) * min(abs(a), abs(b))
return
!-------------------------------------------------------------------------------
!
end function minmod
!
!===============================================================================
!
! function MINMOD4:
! ================
!
! Function returns the minimum module value among four arguments.
!
! Arguments:
!
! a, b, c, d - the input values;
!
!===============================================================================
!
real(kind=8) function minmod4(a, b, c, d)
! local variables are not implicit by default
!
implicit none
! input arguments
!
real(kind=8), intent(in) :: a, b, c, d
!
!-------------------------------------------------------------------------------
!
minmod4 = minmod(minmod(a, b), minmod(c, d))
return
!-------------------------------------------------------------------------------
!
end function minmod4
!
!===============================================================================
!
! function MEDIAN:
! ===============
!
! Function returns the median of three argument values.
!
! Arguments:
!
! a, b, c - the input values;
!
!===============================================================================
!
real(kind=8) function median(a, b, c)
! local variables are not implicit by default
!
implicit none
! input arguments
!
real(kind=8), intent(in) :: a, b, c
!
!-------------------------------------------------------------------------------
!
median = a + minmod(b - a, c - a)
return
end function median
!
!===============================================================================
!
! subroutine FIX_POSITIVITY:
! -------------------------
!
! Subroutine scans the input arrays of the left and right states fl(:) and
! fr(:) for negative values. If it finds a negative value, it repeates the
! state reconstruction from f(:) using the zeroth order interpolation.
!
!===============================================================================
!
subroutine fix_positivity(n, f, fl, fr)
2011-06-09 14:47:59 -03:00
! local variables are not implicit by default
!
implicit none
2011-06-09 14:47:59 -03:00
! input/output arguments
2011-06-09 14:47:59 -03:00
!
integer , intent(in) :: n
real(kind=8), dimension(n), intent(in) :: f
real(kind=8), dimension(n), intent(inout) :: fl, fr
! local variables
!
integer :: i, im1, ip1
real(kind=8) :: fmn, fmx
!
!------------------------------------------------------------------------------
!
#ifdef PROFILE
! start accounting time for positivity fix
!
call start_timer(imf)
#endif /* PROFILE */
! check positivity only if desired
!
if (positivity) then
! look for negative values in the states along the vector
!
do i = 1, n
! check if the left state has a negative value
!
if (fl(i) <= 0.0d+00) then
! calculate the left neighbour index
!
im1 = max(1, i - 1)
! limit the states using the zeroth-order reconstruction
!
fl(i ) = f(i)
fr(im1) = f(i)
end if ! fl ≤ 0
! check if the right state has a negative value
!
if (fr(i) <= 0.0d+00) then
! calculate the right neighbour index
!
ip1 = min(n, i + 1)
! limit the states using the zeroth-order reconstruction
!
fl(ip1) = f(ip1)
fr(i ) = f(ip1)
end if ! fr ≤ 0
end do ! i = 1, n
end if ! positivity == .true.
#ifdef PROFILE
! stop accounting time for positivity fix
!
call stop_timer(imf)
#endif /* PROFILE */
!-------------------------------------------------------------------------------
!
end subroutine fix_positivity
!
!===============================================================================
!
! subroutine CLIP_EXTREMA:
! -----------------------
!
! Subroutine scans the reconstructed states and check if they didn't leave
! the allowed limits. In the case where the limits where exceeded,
! the states are limited using constant reconstruction.
!
! Arguments:
!
! n - the length of input vectors;
! f - the cell centered integrals of variable;
! fl, fr - the left and right states of variable;
!
!===============================================================================
!
subroutine clip_extrema(n, f, fl, fr)
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
integer , intent(in) :: n
real(kind=8), dimension(n), intent(in) :: f
real(kind=8), dimension(n), intent(inout) :: fl, fr
! local variables
!
integer :: i, im1, ip1, ip2
real(kind=8) :: fmn, fmx
real(kind=8) :: dfl, dfr, df
!
!------------------------------------------------------------------------------
!
#ifdef PROFILE
! start accounting time for extrema clipping
!
call start_timer(imc)
#endif /* PROFILE */
! iterate over all points
!
do i = 1, n
! calculate indices
!
im1 = max(1, i - 1)
ip1 = min(n, i + 1)
! estimate the bounds of the allowed interval for reconstructed states
!
fmn = min(f(i), f(ip1))
fmx = max(f(i), f(ip1))
! check if the left state lays in the allowed range
!
if (fl(i) < fmn .or. fl(i) > fmx) then
! calculate the left and right derivatives
!
dfl = f(i ) - f(im1)
dfr = f(ip1) - f(i )
! get the limited slope
!
df = limiter_clip(0.5d+00, dfl, dfr)
! calculate new states
!
fl(i ) = f(i ) + df
fr(im1) = f(i ) - df
end if
! check if the right state lays in the allowed range
!
if (fr(i) < fmn .or. fr(i) > fmx) then
! calculate the missing index
!
ip2 = min(n, i + 2)
! calculate the left and right derivatives
!
dfl = f(ip1) - f(i )
dfr = f(ip2) - f(ip1)
! get the limited slope
!
df = limiter_clip(0.5d+00, dfl, dfr)
! calculate new states
!
fl(ip1) = f(ip1) + df
fr(i ) = f(ip1) - df
end if
end do ! i = 1, n
#ifdef PROFILE
! stop accounting time for extrema clipping
!
call stop_timer(imc)
#endif /* PROFILE */
!-------------------------------------------------------------------------------
!
end subroutine clip_extrema
!===============================================================================
!
end module interpolations