amun-code/src/interpolations.F90

721 lines
19 KiB
Fortran
Raw Normal View History

!!******************************************************************************
!!
!! This file is part of the AMUN source code, a program to perform
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2013 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by
!! the Free Software Foundation, either version 3 of the License, or
!! (at your option) any later version.
!!
!! This program is distributed in the hope that it will be useful,
!! but WITHOUT ANY WARRANTY; without even the implied warranty of
!! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
!! GNU General Public License for more details.
!!
!! You should have received a copy of the GNU General Public License
!! along with this program. If not, see <http://www.gnu.org/licenses/>.
!!
!!******************************************************************************
!!
!! module: INTERPOLATIONS
!!
!! This module provides subroutines to interpolate variables and reconstruct
!! the Riemann states.
!!
!!
!!******************************************************************************
!
module interpolations
! module variables are not implicit by default
!
implicit none
! pointers to the reconstruction and limiter procedures
!
procedure(reconstruct) , pointer, save :: reconstruct_states => null()
procedure(limiter_zero), pointer, save :: limiter => null()
! module parameters
!
real(kind=8), save :: eps = epsilon(1.0d+00)
! flags for reconstruction corrections
!
logical , save :: positivity = .false.
! by default everything is private
!
private
! declare public subroutines
!
public :: initialize_interpolations, finalize_interpolations
public :: reconstruct, limiter
public :: fix_positivity
!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!
contains
!
!===============================================================================
!
! subroutine INITIALIZE_INTERPOLATIONS:
! ------------------------------------
!
! Subroutine initializes the interpolation module by reading the module
! parameters.
!
!
!===============================================================================
!
subroutine initialize_interpolations(verbose, iret)
! include external procedures
!
use parameters, only : get_parameter_string, get_parameter_real
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
logical, intent(in) :: verbose
integer, intent(inout) :: iret
! local variables
!
character(len=255) :: sreconstruction = "tvd"
character(len=255) :: slimiter = "mm"
character(len=255) :: positivity_fix = "off"
character(len=255) :: name_rec = ""
character(len=255) :: name_lim = ""
!
!-------------------------------------------------------------------------------
!
! obtain the user defined interpolation methods and coefficients
!
call get_parameter_string("reconstruction", sreconstruction)
call get_parameter_string("limiter" , slimiter )
call get_parameter_string("fix_positivity", positivity_fix )
call get_parameter_real ("eps" , eps )
! select the reconstruction method
!
select case(trim(sreconstruction))
case ("tvd", "TVD")
name_rec = "2nd order TVD"
reconstruct_states => reconstruct_tvd
case ("weno3", "WENO3")
name_rec = "3rd order WENO"
reconstruct_states => reconstruct_weno3
case default
if (verbose) then
write (*,"(1x,a)") "The selected reconstruction method is not " // &
"implemented: " // trim(sreconstruction)
stop
end if
end select
! select the limiter
!
select case(trim(slimiter))
case ("mm", "minmod")
name_lim = "minmod"
limiter => limiter_minmod
case ("mc", "monotonized_central")
name_lim = "monotonized central"
limiter => limiter_monotonized_central
case ("sb", "superbee")
name_lim = "superbee"
limiter => limiter_superbee
case ("vl", "vanleer")
name_lim = "van Leer"
limiter => limiter_vanleer
case ("va", "vanalbada")
name_lim = "van Albada"
limiter => limiter_vanalbada
case default
name_lim = "zero derivative"
limiter => limiter_zero
end select
! check additional reconstruction limiting
!
select case(trim(positivity_fix))
case ("on", "ON", "t", "T", "y", "Y", "true", "TRUE", "yes", "YES")
positivity = .true.
case default
positivity = .false.
end select
! print informations about the reconstruction methods and parameters
!
if (verbose) then
write (*,"(4x,a14,9x,'=',1x,a)") "reconstruction", trim(name_rec)
write (*,"(4x,a14,9x,'=',1x,a)") "limiter ", trim(name_lim)
write (*,"(4x,a14,9x,'=',1x,a)") "fix positivity", trim(positivity_fix)
end if
!-------------------------------------------------------------------------------
!
end subroutine initialize_interpolations
!
!===============================================================================
!
! subroutine FINALIZE_INTERPOLATIONS:
! ----------------------------------
!
! Subroutine finalizes the interpolation module by releasing all memory used
! by its module variables.
!
!
!===============================================================================
!
subroutine finalize_interpolations(iret)
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
integer, intent(inout) :: iret
!
!-------------------------------------------------------------------------------
!
! release the procedure pointers
!
nullify(reconstruct_states)
nullify(limiter)
!-------------------------------------------------------------------------------
!
end subroutine finalize_interpolations
!
!===============================================================================
!
! subroutine RECONSTRUCT:
! ----------------------
!
! Subroutine calls a reconstruction procedure, depending on the compilation
! flag SPACE, in order to interpolate the left and right states from their
! cell integrals. These states are required by any approximate Riemann
! solver.
!
! Arguments:
!
! n - the length of the input vector;
! h - the spatial step; this is required for some reconstruction methods;
! f - the input vector of cell averaged values;
! fl - the left side state reconstructed for location (i+1/2);
! fr - the right side state reconstructed for location (i+1/2);
!
!===============================================================================
!
subroutine reconstruct(n, h, f, fl, fr)
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
integer , intent(in) :: n
real(kind=8) , intent(in) :: h
real(kind=8), dimension(n), intent(in) :: f
real(kind=8), dimension(n), intent(out) :: fl, fr
!
!-------------------------------------------------------------------------------
!
! reconstruct the states using the selected subroutine
!
call reconstruct_states(n, h, f(:), fl(:), fr(:))
!-------------------------------------------------------------------------------
!
end subroutine reconstruct
!
!===============================================================================
!
! subroutine RECONSTRUCT_TVD:
! --------------------------
!
! Subroutine reconstructs the interface states using the second order TVD
! method with a selected limiter.
!
! Arguments are described in subroutine reconstruct().
!
!
!===============================================================================
!
subroutine reconstruct_tvd(n, h, f, fl, fr)
2011-05-28 09:49:35 -03:00
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
integer , intent(in) :: n
real(kind=8) , intent(in) :: h
real(kind=8), dimension(n), intent(in) :: f
real(kind=8), dimension(n), intent(out) :: fl, fr
! local variables
!
integer :: i, im1, ip1
real(kind=8) :: df, dfl, dfr
!
!-------------------------------------------------------------------------------
!
! calculate the left- and right-side interface interpolations
!
do i = 1, n
! calculate left and right indices
!
im1 = max(1, i - 1)
ip1 = min(n, i + 1)
! calculate left and right side derivatives
!
dfl = f(i ) - f(im1)
dfr = f(ip1) - f(i )
! obtain the TVD limited derivative
!
df = limiter(0.5d+00, dfl, dfr)
! update the left and right-side interpolation states
!
fl(i ) = f(i) + df
fr(im1) = f(i) - df
end do ! i = 1, n
! update the interpolation of the first and last points
!
fl(1) = f(1)
fr(n) = f(n)
!-------------------------------------------------------------------------------
!
end subroutine reconstruct_tvd
!
!===============================================================================
!
! subroutine RECONSTRUCT_WENO3:
! ----------------------------
!
! Subroutine reconstructs the interface states using the third order
! Weighted Essentially Non-Oscillatory (WENO) method.
!
! Arguments are described in subroutine reconstruct().
!
! References:
!
! [1] Yamaleev & Carpenter, 2009, J. Comput. Phys., 228, 3025
!
!===============================================================================
!
subroutine reconstruct_weno3(n, h, f, fl, fr)
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
integer , intent(in) :: n
real(kind=8) , intent(in) :: h
real(kind=8), dimension(n), intent(in) :: f
real(kind=8), dimension(n), intent(out) :: fl, fr
! local variables
!
integer :: i, im1, ip1
real(kind=8) :: bp, bm, ap, am, wp, wm, ww
real(kind=8) :: dfl, dfr, df, fp, fm, fc, h2
! selection weights
!
real, parameter :: dp = 2.0d+00 / 3.0d+00, dm = 1.0d+00 / 3.0d+00
!
!-------------------------------------------------------------------------------
!
! prepare common parameters
!
h2 = h * h
! iterate along the vector
!
do i = 1, n
! prepare neighbour indices
!
im1 = max(1, i - 1)
ip1 = min(n, i + 1)
! calculate the left and right derivatives
!
dfl = f(i ) - f(im1)
dfr = f(ip1) - f(i )
! calculate coefficient omega
!
ww = (dfr - dfl)**2
! calculate corresponding betas
!
bp = dfr * dfr
bm = dfl * dfl
! calculate improved alphas
!
ap = 1.0d+00 + ww / (bp + h2)
am = 1.0d+00 + ww / (bm + h2)
! calculate weights
!
wp = dp * ap
wm = dm * am
ww = 2.0d+00 * (wp + wm)
! calculate central interpolation
!
fp = f(i ) + f(ip1)
! calculate left side interpolation
!
fm = - f(im1) + 3.0d+00 * f(i )
! calculate the left state
!
fl( i ) = (wp * fp + wm * fm) / ww
! calculate weights
!
wp = dp * am
wm = dm * ap
ww = 2.0d+00 * (wp + wm)
! calculate central interpolation
!
fp = f(i ) + f(im1)
! calculate right side interpolation
!
fm = - f(ip1) + 3.0d+00 * f(i )
! calculate the right state
!
fr(im1) = (wp * fp + wm * fm) / ww
end do ! i = 1, n
! update the interpolation of the first and last points
!
fl(1) = f (1)
fr(n) = fl(n)
!-------------------------------------------------------------------------------
!
end subroutine reconstruct_weno3
!
!===============================================================================
!
! function LIMITER_ZERO:
! ---------------------
!
! Function returns zero.
!
! Arguments:
!
! x - scaling factor;
! a, b - the input values;
!
!===============================================================================
!
function limiter_zero(x, a, b) result(c)
! local variables are not implicit by default
!
implicit none
! input arguments
!
real(kind=8), intent(in) :: x, a, b
real(kind=8) :: c
!
!-------------------------------------------------------------------------------
!
c = 0.0d+00
!-------------------------------------------------------------------------------
!
end function limiter_zero
!
!===============================================================================
!
! function LIMITER_MINMOD:
! -----------------------
!
! Function returns the minimum module value among two arguments using
! minmod limiter.
!
! Arguments:
!
! x - scaling factor;
! a, b - the input values;
!
!===============================================================================
!
function limiter_minmod(x, a, b) result(c)
! local variables are not implicit by default
!
implicit none
! input arguments
!
real(kind=8), intent(in) :: x, a, b
real(kind=8) :: c
!
!-------------------------------------------------------------------------------
!
c = 0.5d+00 * (sign(x, a) + sign(x, b)) * min(abs(a), abs(b))
!-------------------------------------------------------------------------------
!
end function limiter_minmod
!
!===============================================================================
!
! function LIMITER_MONOTONIZED_CENTRAL:
! ------------------------------------
!
! Function returns the minimum module value among two arguments using
! the monotonized central TVD limiter.
!
! Arguments:
!
! x - scaling factor;
! a, b - the input values;
!
!===============================================================================
!
function limiter_monotonized_central(x, a, b) result(c)
! local variables are not implicit by default
!
implicit none
! input arguments
!
real(kind=8), intent(in) :: x, a, b
real(kind=8) :: c
!
!-------------------------------------------------------------------------------
!
c = (sign(x, a) + sign(x, b)) * min(abs(a), abs(b), 2.5d-01 * abs(a + b))
!-------------------------------------------------------------------------------
!
end function limiter_monotonized_central
!
!===============================================================================
!
! function LIMITER_SUPERBEE:
! -------------------------
!
! Function returns the minimum module value among two arguments using
! superbee limiter.
!
! Arguments:
!
! x - scaling factor;
! a, b - the input values;
!
!===============================================================================
!
function limiter_superbee(x, a, b) result(c)
! local variables are not implicit by default
!
implicit none
! input arguments
!
real(kind=8), intent(in) :: x, a, b
real(kind=8) :: c
!
!-------------------------------------------------------------------------------
!
c = 0.5d+00 * (sign(x, a) + sign(x, b)) &
* max(min(2.0d+00 * abs(a), abs(b)), min(abs(a), 2.0d+00 * abs(b)))
!-------------------------------------------------------------------------------
!
end function limiter_superbee
!
!===============================================================================
!
! function LIMITER_VANLEER:
! ------------------------
!
! Function returns the minimum module value among two arguments using
! van Leer's limiter.
!
! Arguments:
2011-03-25 01:05:58 -03:00
!
! x - scaling factor;
! a, b - the input values;
!
!===============================================================================
!
function limiter_vanleer(x, a, b) result(c)
! local variables are not implicit by default
!
implicit none
! input arguments
!
real(kind=8), intent(in) :: x, a, b
real(kind=8) :: c
!
!-------------------------------------------------------------------------------
!
c = a * b
if (c > 0.0d+00) then
c = 2.0d+00 * x * c / (a + b)
else
c = 0.0d+00
end if
!-------------------------------------------------------------------------------
!
end function limiter_vanleer
!
!===============================================================================
!
! function LIMITER_VANALBADA:
! --------------------------
!
! Function returns the minimum module value among two arguments using
! van Albada's limiter.
!
! Arguments:
!
! x - scaling factor;
! a, b - the input values;
!
!===============================================================================
!
function limiter_vanalbada(x, a, b) result(c)
! local variables are not implicit by default
!
implicit none
! input arguments
!
real(kind=8), intent(in) :: x, a, b
real(kind=8) :: c
!
!-------------------------------------------------------------------------------
!
c = x * a * b * (a + b) / max(eps, a * a + b * b)
2011-06-09 14:12:33 -03:00
!-------------------------------------------------------------------------------
!
end function limiter_vanalbada
!
!===============================================================================
!
! subroutine FIX_POSITIVITY:
! -------------------------
!
! Subroutine scans the input arrays of the left and right states fl(:) and
! fr(:) for negative values. If it finds a negative value, it repeates the
! state reconstruction from f(:) using the zeroth order interpolation.
!
!===============================================================================
!
subroutine fix_positivity(n, f, fl, fr)
2011-06-09 14:47:59 -03:00
! local variables are not implicit by default
!
implicit none
2011-06-09 14:47:59 -03:00
! input/output arguments
2011-06-09 14:47:59 -03:00
!
integer , intent(in) :: n
real(kind=8), dimension(n), intent(in) :: f
real(kind=8), dimension(n), intent(inout) :: fl, fr
! local variables
!
integer :: i, im1, ip1
real(kind=8) :: fmn, fmx
!
!------------------------------------------------------------------------------
!
! check positivity only if desired
!
if (positivity) then
! look for negative values in the states along the vector
!
do i = 1, n
! check if the left state has a negative value
!
if (fl(i) <= 0.0d+00) then
! calculate the left neighbour index
!
im1 = max(1, i - 1)
! limit the states using the zeroth-order reconstruction
!
fl(i ) = f(i)
fr(im1) = f(i)
end if ! fl ≤ 0
! check if the right state has a negative value
!
if (fr(i) <= 0.0d+00) then
! calculate the right neighbour index
!
ip1 = min(n, i + 1)
! limit the states using the zeroth-order reconstruction
!
fl(ip1) = f(ip1)
fr(i ) = f(ip1)
end if ! fr ≤ 0
end do ! i = 1, n
end if ! positivity == .true.
!-------------------------------------------------------------------------------
!
end subroutine fix_positivity
!===============================================================================
!
end module interpolations