!!****************************************************************************** !! !! This file is part of the AMUN source code, a program to perform !! Newtonian or relativistic magnetohydrodynamical simulations on uniform or !! adaptive mesh. !! !! Copyright (C) 2008-2015 Grzegorz Kowal <grzegorz@amuncode.org> !! !! This program is free software: you can redistribute it and/or modify !! it under the terms of the GNU General Public License as published by !! the Free Software Foundation, either version 3 of the License, or !! (at your option) any later version. !! !! This program is distributed in the hope that it will be useful, !! but WITHOUT ANY WARRANTY; without even the implied warranty of !! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the !! GNU General Public License for more details. !! !! You should have received a copy of the GNU General Public License !! along with this program. If not, see <http://www.gnu.org/licenses/>. !! !!****************************************************************************** !! !! module: INTERPOLATIONS !! !! This module provides subroutines to interpolate variables and reconstruct !! the Riemann states. !! !! !!****************************************************************************** ! module interpolations #ifdef PROFILE ! import external subroutines ! use timers, only : set_timer, start_timer, stop_timer #endif /* PROFILE */ ! module variables are not implicit by default ! implicit none #ifdef PROFILE ! timer indices ! integer , save :: imi, imr, imf, imc #endif /* PROFILE */ ! pointers to the reconstruction and limiter procedures ! procedure(interfaces_tvd) , pointer, save :: interfaces => null() procedure(reconstruct) , pointer, save :: reconstruct_states => null() procedure(limiter_zero) , pointer, save :: limiter_tvd => null() procedure(limiter_zero) , pointer, save :: limiter_prol => null() procedure(limiter_zero) , pointer, save :: limiter_clip => null() ! module parameters ! real(kind=8), save :: eps = epsilon(1.0d+00) real(kind=8), save :: rad = 0.5d+00 ! monotonicity preserving reconstruction coefficients ! real(kind=8), save :: kappa = 1.0d+00 real(kind=8), save :: kbeta = 1.0d+00 ! number of ghost zones (required for compact schemes) ! integer , save :: ng = 2 ! number of cells used in the Gaussian process reconstruction ! integer , save :: ngp = 5 ! normal distribution width in the Gaussian process reconstruction ! real(kind=8), save :: sgp = 1.0d+01 ! Gaussian process reconstruction coefficients vector ! real(kind=8), dimension(:) , allocatable, save :: cgp ! flags for reconstruction corrections ! logical , save :: positivity = .false. logical , save :: clip = .false. ! by default everything is private ! private ! declare public subroutines ! public :: initialize_interpolations, finalize_interpolations public :: interfaces, reconstruct, limiter_prol public :: fix_positivity !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! contains ! !=============================================================================== ! ! subroutine INITIALIZE_INTERPOLATIONS: ! ------------------------------------ ! ! Subroutine initializes the interpolation module by reading the module ! parameters. ! ! !=============================================================================== ! subroutine initialize_interpolations(verbose, iret) ! include external procedures ! use error , only : print_warning use parameters, only : get_parameter_string, get_parameter_integer & , get_parameter_real ! local variables are not implicit by default ! implicit none ! subroutine arguments ! logical, intent(in) :: verbose integer, intent(inout) :: iret ! local variables ! character(len=255) :: sreconstruction = "tvd" character(len=255) :: tlimiter = "mm" character(len=255) :: plimiter = "mm" character(len=255) :: climiter = "mm" character(len=255) :: positivity_fix = "off" character(len=255) :: clip_extrema = "off" character(len=255) :: name_rec = "" character(len=255) :: name_tlim = "" character(len=255) :: name_plim = "" character(len=255) :: name_clim = "" character(len= 16) :: stmp real(kind=8) :: cfl = 0.5d+00 ! !------------------------------------------------------------------------------- ! #ifdef PROFILE ! set timer descriptions ! call set_timer('interpolations:: initialization', imi) call set_timer('interpolations:: reconstruction', imr) call set_timer('interpolations:: fix positivity', imf) call set_timer('interpolations:: clip extrema' , imc) ! start accounting time for module initialization/finalization ! call start_timer(imi) #endif /* PROFILE */ ! obtain the user defined interpolation methods and coefficients ! call get_parameter_string ("reconstruction" , sreconstruction) call get_parameter_string ("limiter" , tlimiter ) call get_parameter_string ("fix_positivity" , positivity_fix ) call get_parameter_string ("clip_extrema" , clip_extrema ) call get_parameter_string ("extrema_limiter" , climiter ) call get_parameter_string ("prolongation_limiter", plimiter ) call get_parameter_integer("nghosts" , ng ) call get_parameter_integer("ngp" , ngp ) call get_parameter_real ("sgp" , sgp ) call get_parameter_real ("eps" , eps ) call get_parameter_real ("limo3_rad" , rad ) call get_parameter_real ("kappa" , kappa ) call get_parameter_real ("kbeta" , kbeta ) call get_parameter_real ("cfl" , cfl ) ! calculate κ = (1 - ν) / ν ! kappa = min(kappa, (1.0d+00 - cfl) / cfl) ! select the reconstruction method ! select case(trim(sreconstruction)) case ("tvd", "TVD") name_rec = "2nd order TVD" interfaces => interfaces_tvd reconstruct_states => reconstruct_tvd if (verbose .and. ng < 2) & call print_warning("interpolations:initialize_interpolation" & , "Increase the number of ghost cells (at least 2).") case ("weno3", "WENO3") name_rec = "3rd order WENO" interfaces => interfaces_dir reconstruct_states => reconstruct_weno3 if (verbose .and. ng < 2) & call print_warning("interpolations:initialize_interpolation" & , "Increase the number of ghost cells (at least 2).") case ("limo3", "LIMO3", "LimO3") name_rec = "3rd order logarithmic limited" interfaces => interfaces_dir reconstruct_states => reconstruct_limo3 if (verbose .and. ng < 2) & call print_warning("interpolations:initialize_interpolation" & , "Increase the number of ghost cells (at least 2).") eps = max(1.0d-12, eps) case ("weno5z", "weno5-z", "WENO5Z", "WENO5-Z") name_rec = "5th order WENO-Z (Borges et al. 2008)" interfaces => interfaces_dir reconstruct_states => reconstruct_weno5z if (verbose .and. ng < 4) & call print_warning("interpolations:initialize_interpolation" & , "Increase the number of ghost cells (at least 4).") case ("weno5yc", "weno5-yc", "WENO5YC", "WENO5-YC") name_rec = "5th order WENO-YC (Yamaleev & Carpenter 2009)" interfaces => interfaces_dir reconstruct_states => reconstruct_weno5yc if (verbose .and. ng < 4) & call print_warning("interpolations:initialize_interpolation" & , "Increase the number of ghost cells (at least 4).") case ("weno5ns", "weno5-ns", "WENO5NS", "WENO5-NS") name_rec = "5th order WENO-NS (Ha et al. 2013)" interfaces => interfaces_dir reconstruct_states => reconstruct_weno5ns if (verbose .and. ng < 4) & call print_warning("interpolations:initialize_interpolation" & , "Increase the number of ghost cells (at least 4).") case ("crweno5z", "crweno5-z", "CRWENO5Z", "CRWENO5-Z") name_rec = "5th order Compact WENO-Z" interfaces => interfaces_dir reconstruct_states => reconstruct_crweno5z if (verbose .and. ng < 4) & call print_warning("interpolations:initialize_interpolation" & , "Increase the number of ghost cells (at least 4).") case ("crweno5yc", "crweno5-yc", "CRWENO5YC", "CRWENO5-YC") name_rec = "5th order Compact WENO-YC" interfaces => interfaces_dir reconstruct_states => reconstruct_crweno5yc if (verbose .and. ng < 4) & call print_warning("interpolations:initialize_interpolation" & , "Increase the number of ghost cells (at least 4).") case ("crweno5ns", "crweno5-ns", "CRWENO5NS", "CRWENO5-NS") name_rec = "5th order Compact WENO-NS" interfaces => interfaces_dir reconstruct_states => reconstruct_crweno5ns if (verbose .and. ng < 4) & call print_warning("interpolations:initialize_interpolation" & , "Increase the number of ghost cells (at least 4).") case ("mp5", "MP5") name_rec = "5th order Monotonicity Preserving" interfaces => interfaces_dir reconstruct_states => reconstruct_mp5 if (verbose .and. ng < 4) & call print_warning("interpolations:initialize_interpolation" & , "Increase the number of ghost cells (at least 4).") case ("crmp5", "CRMP5") name_rec = "5th order Compact Monotonicity Preserving" interfaces => interfaces_dir reconstruct_states => reconstruct_crmp5 if (verbose .and. ng < 4) & call print_warning("interpolations:initialize_interpolation" & , "Increase the number of ghost cells (at least 4).") case ("crmp5l", "crmp5ld", "CRMP5L", "CRMP5LD") name_rec = "5th order Low-Dissipation Compact Monotonicity Preserving" interfaces => interfaces_dir reconstruct_states => reconstruct_crmp5ld if (verbose .and. ng < 4) & call print_warning("interpolations:initialize_interpolation" & , "Increase the number of ghost cells (at least 4).") case ("gp", "GP") write(stmp, '(f16.1)') sgp write(name_rec, '("Gaussian Process (",i1,"-point, δ=",a,")")') ngp & , trim(adjustl(stmp)) ! allocate the Gaussian process reconstruction matrix and position vector ! allocate(cgp(ngp)) ! prepare matrix coefficients ! call prepare_gp() interfaces => interfaces_dir reconstruct_states => reconstruct_gp if (verbose .and. 2 * ng <= ngp - 1) & call print_warning("interpolations:initialize_interpolation" & , "Increase the number of ghost cells (at least (ngp+1)/2).") if (verbose .and. mod(ngp,2) == 0) & call print_warning("interpolations:initialize_interpolation" & , "The parameter ngp has to be integer with odd value.") case default if (verbose) then write (*,"(1x,a)") "The selected reconstruction method is not " // & "implemented: " // trim(sreconstruction) stop end if end select ! select the TVD limiter ! select case(trim(tlimiter)) case ("mm", "minmod") name_tlim = "minmod" limiter_tvd => limiter_minmod case ("mc", "monotonized_central") name_tlim = "monotonized central" limiter_tvd => limiter_monotonized_central case ("sb", "superbee") name_tlim = "superbee" limiter_tvd => limiter_superbee case ("vl", "vanleer") name_tlim = "van Leer" limiter_tvd => limiter_vanleer case ("va", "vanalbada") name_tlim = "van Albada" limiter_tvd => limiter_vanalbada case default name_tlim = "zero derivative" limiter_tvd => limiter_zero end select ! select the prolongation limiter ! select case(trim(plimiter)) case ("mm", "minmod") name_plim = "minmod" limiter_prol => limiter_minmod case ("mc", "monotonized_central") name_plim = "monotonized central" limiter_prol => limiter_monotonized_central case ("sb", "superbee") name_plim = "superbee" limiter_prol => limiter_superbee case ("vl", "vanleer") name_plim = "van Leer" limiter_prol => limiter_vanleer case default name_plim = "zero derivative" limiter_prol => limiter_zero end select ! select the clipping limiter ! select case(trim(climiter)) case ("mm", "minmod") name_clim = "minmod" limiter_clip => limiter_minmod case ("mc", "monotonized_central") name_clim = "monotonized central" limiter_clip => limiter_monotonized_central case ("sb", "superbee") name_clim = "superbee" limiter_clip => limiter_superbee case ("vl", "vanleer") name_clim = "van Leer" limiter_clip => limiter_vanleer case default name_clim = "zero derivative" limiter_clip => limiter_zero end select ! check additional reconstruction limiting ! select case(trim(positivity_fix)) case ("on", "ON", "t", "T", "y", "Y", "true", "TRUE", "yes", "YES") positivity = .true. case default positivity = .false. end select select case(trim(clip_extrema)) case ("on", "ON", "t", "T", "y", "Y", "true", "TRUE", "yes", "YES") clip = .true. case default clip = .false. end select ! print informations about the reconstruction methods and parameters ! if (verbose) then write (*,"(4x,a14, 9x,'=',1x,a)") "reconstruction" , trim(name_rec) write (*,"(4x,a11,12x,'=',1x,a)") "TVD limiter" , trim(name_tlim) write (*,"(4x,a20, 3x,'=',1x,a)") "prolongation limiter", trim(name_plim) write (*,"(4x,a14, 9x,'=',1x,a)") "fix positivity" , trim(positivity_fix) write (*,"(4x,a12,11x,'=',1x,a)") "clip extrema" , trim(clip_extrema) if (clip) then write (*,"(4x,a15,8x,'=',1x,a)") "extrema limiter", trim(name_clim) end if end if #ifdef PROFILE ! stop accounting time for module initialization/finalization ! call stop_timer(imi) #endif /* PROFILE */ !------------------------------------------------------------------------------- ! end subroutine initialize_interpolations ! !=============================================================================== ! ! subroutine FINALIZE_INTERPOLATIONS: ! ---------------------------------- ! ! Subroutine finalizes the interpolation module by releasing all memory used ! by its module variables. ! ! !=============================================================================== ! subroutine finalize_interpolations(iret) ! local variables are not implicit by default ! implicit none ! subroutine arguments ! integer, intent(inout) :: iret ! !------------------------------------------------------------------------------- ! #ifdef PROFILE ! start accounting time for module initialization/finalization ! call start_timer(imi) #endif /* PROFILE */ ! deallocate Gaussian process reconstruction coefficient vector if used ! if (allocated(cgp)) deallocate(cgp) ! release the procedure pointers ! nullify(reconstruct_states) nullify(limiter_tvd) nullify(limiter_prol) nullify(limiter_clip) #ifdef PROFILE ! stop accounting time for module initialization/finalization ! call stop_timer(imi) #endif /* PROFILE */ !------------------------------------------------------------------------------- ! end subroutine finalize_interpolations ! !=============================================================================== ! ! subroutine INTERFACES_TVD: ! ------------------------- ! ! Subroutine reconstructs both side interfaces of variable using TVD methods. ! ! Arguments: ! ! positive - the variable positivity flag; ! h - the spatial step; ! q - the variable array; ! qi - the array of reconstructed interfaces (2 in each direction); ! !=============================================================================== ! subroutine interfaces_tvd(positive, h, q, qi) ! include external procedures ! use coordinates , only : im , jm , km use coordinates , only : ib , jb , kb , ie , je , ke use coordinates , only : ibl, jbl, kbl, ieu, jeu, keu ! local variables are not implicit by default ! implicit none ! subroutine arguments ! logical , intent(in) :: positive real(kind=8), dimension(NDIMS) , intent(in) :: h real(kind=8), dimension(im,jm,km) , intent(in) :: q real(kind=8), dimension(im,jm,km,2,NDIMS), intent(out) :: qi ! local variables ! integer :: i, im1, ip1 integer :: j, jm1, jp1 integer :: k, km1, kp1 real(kind=8), dimension(NDIMS) :: dql, dqr, dq ! !------------------------------------------------------------------------------- ! ! copy ghost zones ! do k = 1, NDIMS do j = 1, 2 qi( 1:ib, 1:jm, 1:km,j,k) = q( 1:ib, 1:jm, 1:km) qi(ie:im, 1:jm, 1:km,j,k) = q(ie:im, 1:jm, 1:km) qi(ib:ie, 1:jb, 1:km,j,k) = q(ib:ie, 1:jb, 1:km) qi(ib:ie,je:jm, 1:km,j,k) = q(ib:ie,je:jm, 1:km) #if NDIMS == 3 qi(ib:ie,jb:je, 1:kb,j,k) = q(ib:ie,jb:je, 1:kb) qi(ib:ie,jb:je,ke:km,j,k) = q(ib:ie,jb:je,ke:km) #endif /* NDIMS == 3 */ end do end do ! interpolate interfaces ! do k = kbl, keu #if NDIMS == 3 km1 = k - 1 kp1 = k + 1 #endif /* NDIMS == 3 */ do j = jbl, jeu jm1 = j - 1 jp1 = j + 1 do i = ibl, ieu im1 = i - 1 ip1 = i + 1 ! calculate the TVD derivatives ! dql(1) = q(i ,j,k) - q(im1,j,k) dqr(1) = q(ip1,j,k) - q(i ,j,k) dq (1) = limiter_tvd(0.5d+00, dql(1), dqr(1)) dql(2) = q(i,j ,k) - q(i,jm1,k) dqr(2) = q(i,jp1,k) - q(i,j ,k) dq (2) = limiter_tvd(0.5d+00, dql(2), dqr(2)) #if NDIMS == 3 dql(3) = q(i,j,k ) - q(i,j,km1) dqr(3) = q(i,j,kp1) - q(i,j,k ) dq (3) = limiter_tvd(0.5d+00, dql(3), dqr(3)) #endif /* NDIMS == 3 */ ! limit the derivatives if they produce negative interpolation for positive ! variables ! if (positive) then do while (q(i,j,k) <= sum(abs(dq(1:NDIMS)))) dq(:) = 0.5d+00 * dq(:) end do end if ! interpolate states ! qi(i ,j,k,1,1) = q(i,j,k) + dq(1) qi(im1,j,k,2,1) = q(i,j,k) - dq(1) qi(i,j ,k,1,2) = q(i,j,k) + dq(2) qi(i,jm1,k,2,2) = q(i,j,k) - dq(2) #if NDIMS == 3 qi(i,j,k ,1,3) = q(i,j,k) + dq(3) qi(i,j,km1,2,3) = q(i,j,k) - dq(3) #endif /* NDIMS == 3 */ end do ! i = ibl, ieu end do ! j = jbl, jeu end do ! k = kbl, keu !------------------------------------------------------------------------------- ! end subroutine interfaces_tvd ! !=============================================================================== ! ! subroutine INTERFACES_DIR: ! ------------------------- ! ! Subroutine reconstructs both side interfaces of variable separately ! along each direction. ! ! Arguments: ! ! positive - the variable positivity flag; ! h - the spatial step; ! q - the variable array; ! qi - the array of reconstructed interfaces (2 in each direction); ! !=============================================================================== ! subroutine interfaces_dir(positive, h, q, qi) ! include external procedures ! use coordinates , only : im , jm , km use coordinates , only : ib , jb , kb , ie , je , ke use coordinates , only : ibl, jbl, kbl, ieu, jeu, keu ! local variables are not implicit by default ! implicit none ! subroutine arguments ! logical , intent(in) :: positive real(kind=8), dimension(NDIMS) , intent(in) :: h real(kind=8), dimension(im,jm,km) , intent(in) :: q real(kind=8), dimension(im,jm,km,2,NDIMS), intent(out) :: qi ! local variables ! integer :: i, j, k ! !------------------------------------------------------------------------------- ! ! copy ghost zones ! do k = 1, NDIMS do j = 1, 2 qi( 1:ib, 1:jm, 1:km,j,k) = q( 1:ib, 1:jm, 1:km) qi(ie:im, 1:jm, 1:km,j,k) = q(ie:im, 1:jm, 1:km) qi(ib:ie, 1:jb, 1:km,j,k) = q(ib:ie, 1:jb, 1:km) qi(ib:ie,je:jm, 1:km,j,k) = q(ib:ie,je:jm, 1:km) #if NDIMS == 3 qi(ib:ie,jb:je, 1:kb,j,k) = q(ib:ie,jb:je, 1:kb) qi(ib:ie,jb:je,ke:km,j,k) = q(ib:ie,jb:je,ke:km) #endif /* NDIMS == 3 */ end do end do ! interpolate interfaces ! do k = kbl, keu do j = jbl, jeu call reconstruct(im, h(1), q(1:im,j,k) & , qi(1:im,j,k,1,1), qi(1:im,j,k,2,1)) end do ! j = jbl, jeu do i = ibl, ieu call reconstruct(jm, h(2), q(i,1:jm,k) & , qi(i,1:jm,k,1,2), qi(i,1:jm,k,2,2)) end do ! i = ibl, ieu end do ! k = kbl, keu #if NDIMS == 3 do j = jbl, jeu do i = ibl, ieu call reconstruct(km, h(3), q(i,j,1:km) & , qi(i,j,1:km,1,3), qi(i,j,1:km,2,3)) end do ! i = ibl, ieu end do ! j = jbl, jeu #endif /* NDIMS == 3 */ ! make sure the interface states are positive for positive variables ! if (positive) then do k = kbl, keu do j = jbl, jeu call fix_positivity(im, q(1:im,j,k) & , qi(1:im,j,k,1,1), qi(1:im,j,k,2,1)) end do ! j = jbl, jeu do i = ibl, ieu call fix_positivity(jm, q(i,1:jm,k) & , qi(i,1:jm,k,1,2), qi(i,1:jm,k,2,2)) end do ! i = ibl, ieu end do ! k = kbl, keu #if NDIMS == 3 do j = jbl, jeu do i = ibl, ieu call fix_positivity(km, q(i,j,1:km) & , qi(i,j,1:km,1,3), qi(i,j,1:km,2,3)) end do ! i = ibl, ieu end do ! j = jbl, jeu #endif /* NDIMS == 3 */ end if !------------------------------------------------------------------------------- ! end subroutine interfaces_dir ! !=============================================================================== ! ! subroutine RECONSTRUCT: ! ---------------------- ! ! Subroutine calls a reconstruction procedure, depending on the compilation ! flag SPACE, in order to interpolate the left and right states from their ! cell integrals. These states are required by any approximate Riemann ! solver. ! ! Arguments: ! ! n - the length of the input vector; ! h - the spatial step; this is required for some reconstruction methods; ! f - the input vector of cell averaged values; ! fl - the left side state reconstructed for location (i+1/2); ! fr - the right side state reconstructed for location (i+1/2); ! !=============================================================================== ! subroutine reconstruct(n, h, f, fl, fr) ! local variables are not implicit by default ! implicit none ! subroutine arguments ! integer , intent(in) :: n real(kind=8) , intent(in) :: h real(kind=8), dimension(n), intent(in) :: f real(kind=8), dimension(n), intent(out) :: fl, fr ! !------------------------------------------------------------------------------- ! #ifdef PROFILE ! start accounting time for reconstruction ! call start_timer(imr) #endif /* PROFILE */ ! reconstruct the states using the selected subroutine ! call reconstruct_states(n, h, f(:), fl(:), fr(:)) ! correct the reconstruction near extrema by clipping them in order to improve ! the stability of scheme ! if (clip) call clip_extrema(n, f(:), fl(:), fr(:)) #ifdef PROFILE ! stop accounting time for reconstruction ! call stop_timer(imr) #endif /* PROFILE */ !------------------------------------------------------------------------------- ! end subroutine reconstruct ! !=============================================================================== ! ! subroutine RECONSTRUCT_TVD: ! -------------------------- ! ! Subroutine reconstructs the interface states using the second order TVD ! method with a selected limiter. ! ! Arguments are described in subroutine reconstruct(). ! ! !=============================================================================== ! subroutine reconstruct_tvd(n, h, f, fl, fr) ! local variables are not implicit by default ! implicit none ! subroutine arguments ! integer , intent(in) :: n real(kind=8) , intent(in) :: h real(kind=8), dimension(n), intent(in) :: f real(kind=8), dimension(n), intent(out) :: fl, fr ! local variables ! integer :: i, im1, ip1 real(kind=8) :: df, dfl, dfr ! !------------------------------------------------------------------------------- ! ! calculate the left- and right-side interface interpolations ! do i = 2, n - 1 ! calculate left and right indices ! im1 = i - 1 ip1 = i + 1 ! calculate left and right side derivatives ! dfl = f(i ) - f(im1) dfr = f(ip1) - f(i ) ! obtain the TVD limited derivative ! df = limiter_tvd(0.5d+00, dfl, dfr) ! update the left and right-side interpolation states ! fl(i ) = f(i) + df fr(im1) = f(i) - df end do ! i = 2, n - 1 ! update the interpolation of the first and last points ! i = n - 1 fl(1) = 0.5d+00 * (f(1) + f(2)) fr(i) = 0.5d+00 * (f(i) + f(n)) fl(n) = f(n) fr(n) = f(n) !------------------------------------------------------------------------------- ! end subroutine reconstruct_tvd ! !=============================================================================== ! ! subroutine RECONSTRUCT_WENO3: ! ---------------------------- ! ! Subroutine reconstructs the interface states using the third order ! Weighted Essentially Non-Oscillatory (WENO) method. ! ! Arguments are described in subroutine reconstruct(). ! ! References: ! ! [1] Yamaleev & Carpenter, 2009, J. Comput. Phys., 228, 3025 ! !=============================================================================== ! subroutine reconstruct_weno3(n, h, f, fl, fr) ! local variables are not implicit by default ! implicit none ! subroutine arguments ! integer , intent(in) :: n real(kind=8) , intent(in) :: h real(kind=8), dimension(n), intent(in) :: f real(kind=8), dimension(n), intent(out) :: fl, fr ! local variables ! integer :: i, im1, ip1 real(kind=8) :: bp, bm, ap, am, wp, wm, ww real(kind=8) :: dfl, dfr, df, fp, fm, fc, h2 ! selection weights ! real(kind=8), parameter :: dp = 2.0d+00 / 3.0d+00, dm = 1.0d+00 / 3.0d+00 ! !------------------------------------------------------------------------------- ! ! prepare common parameters ! h2 = h * h ! iterate along the vector ! do i = 2, n - 1 ! prepare neighbour indices ! im1 = i - 1 ip1 = i + 1 ! calculate the left and right derivatives ! dfl = f(i ) - f(im1) dfr = f(ip1) - f(i ) ! calculate coefficient omega ! ww = (dfr - dfl)**2 ! calculate corresponding betas ! bp = dfr * dfr bm = dfl * dfl ! calculate improved alphas ! ap = 1.0d+00 + ww / (bp + h2) am = 1.0d+00 + ww / (bm + h2) ! calculate weights ! wp = dp * ap wm = dm * am ww = 2.0d+00 * (wp + wm) ! calculate central interpolation ! fp = f(i ) + f(ip1) ! calculate left side interpolation ! fm = - f(im1) + 3.0d+00 * f(i ) ! calculate the left state ! fl( i ) = (wp * fp + wm * fm) / ww ! calculate weights ! wp = dp * am wm = dm * ap ww = 2.0d+00 * (wp + wm) ! calculate central interpolation ! fp = f(i ) + f(im1) ! calculate right side interpolation ! fm = - f(ip1) + 3.0d+00 * f(i ) ! calculate the right state ! fr(im1) = (wp * fp + wm * fm) / ww end do ! i = 2, n - 1 ! update the interpolation of the first and last points ! i = n - 1 fl(1) = 0.5d+00 * (f(1) + f(2)) fr(i) = 0.5d+00 * (f(i) + f(n)) fl(n) = f(n) fr(n) = f(n) !------------------------------------------------------------------------------- ! end subroutine reconstruct_weno3 ! !=============================================================================== ! ! subroutine RECONSTRUCT_LIMO3: ! ---------------------------- ! ! Subroutine reconstructs the interface states using the third order method ! with a limiter function LimO3. ! ! Arguments are described in subroutine reconstruct(). ! ! References: ! ! [1] Cada, M. & Torrilhon, M., ! "Compact third-order limiter functions for finite volume methods", ! Journal of Computational Physics, 2009, 228, 4118-4145 ! [2] Mignone, A., Tzeferacos, P., & Bodo, G., ! "High-order conservative finite divergence GLM-MHD schemes for ! cell-centered MHD", ! Journal of Computational Physics, 2010, 229, 5896-5920 ! !=============================================================================== ! subroutine reconstruct_limo3(n, h, f, fl, fr) ! local variables are not implicit by default ! implicit none ! subroutine arguments ! integer , intent(in) :: n real(kind=8) , intent(in) :: h real(kind=8), dimension(n), intent(in) :: f real(kind=8), dimension(n), intent(out) :: fl, fr ! local variables ! integer :: i, im1, ip1 real(kind=8) :: dfl, dfr real(kind=8) :: th, et, f1, f2, xl, xi, rdx, rdx2 ! !------------------------------------------------------------------------------- ! ! prepare parameters ! rdx = rad * h rdx2 = rdx * rdx ! iterate over positions and interpolate states ! do i = 2, n - 1 ! prepare neighbour indices ! im1 = i - 1 ip1 = i + 1 ! prepare left and right differences ! dfl = f(i ) - f(im1) dfr = f(ip1) - f(i ) ! calculate the indicator function (eq. 3.17 in [1]) ! et = (dfl * dfl + dfr * dfr) / rdx2 ! the switching function (embedded in eq. 3.22 in [1], eq. 32 in [2]) ! xi = max(0.0d+00, 0.5d+00 * min(2.0d+00, 1.0d+00 + (et - 1.0d+00) / eps)) xl = 1.0d+00 - xi ! calculate values at i + ½ ! if (abs(dfr) > eps) then ! calculate the slope ratio (eq. 2.8 in [1]) ! th = dfl / dfr ! calculate the quadratic reconstruction (eq. 3.8 in [1], divided by 2) ! f1 = (2.0d+00 + th) / 6.0d+00 ! calculate the third order limiter (eq. 3.13 in [1], cofficients divided by 2) ! if (th >= 0.0d+00) then f2 = max(0.0d+00, min(f1, th, 0.8d+00)) else f2 = max(0.0d+00, min(f1, - 0.25d+00 * th)) end if ! interpolate the left state (eq. 3.5 in [1], eq. 30 in [2]) ! fl(i) = f(i) + dfr * (xl * f1 + xi * f2) else fl(i) = f(i) end if ! calculate values at i - ½ ! if (abs(dfl) > eps) then ! calculate the slope ratio (eq. 2.8 in [1]) ! th = dfr / dfl ! calculate the quadratic reconstruction (eq. 3.8 in [1], divided by 2) ! f1 = (2.0d+00 + th) / 6.0d+00 ! calculate the third order limiter (eq. 3.13 in [1], cofficients divided by 2) ! if (th >= 0.0d+00) then f2 = max(0.0d+00, min(f1, th, 0.8d+00)) else f2 = max(0.0d+00, min(f1, - 0.25d+00 * th)) end if ! interpolate the right state (eq. 3.5 in [1], eq. 30 in [2]) ! fr(im1) = f(i) - dfl * (xl * f1 + xi * f2) else fr(im1) = f(i) end if end do ! i = 2, n - 1 ! update the interpolation of the first and last points ! i = n - 1 fl(1) = 0.5d+00 * (f(1) + f(2)) fr(i) = 0.5d+00 * (f(i) + f(n)) fl(n) = f(n) fr(n) = f(n) !------------------------------------------------------------------------------- ! end subroutine reconstruct_limo3 ! !=============================================================================== ! ! subroutine RECONSTRUCT_WENO5Z: ! ----------------------------- ! ! Subroutine reconstructs the interface states using the fifth order ! Explicit Weighted Essentially Non-Oscillatory (WENO5) method with ! stencil weights by Borges et al. (2008). ! ! Arguments are described in subroutine reconstruct(). ! ! References: ! ! [1] Borges, R., Carmona, M., Costa, B., & Don, W.-S., ! "An improved weighted essentially non-oscillatory scheme for ! hyperbolic conservation laws" ! Journal of Computational Physics, ! 2008, vol. 227, pp. 3191-3211, ! http://dx.doi.org/10.1016/j.jcp.2007.11.038 ! !=============================================================================== ! subroutine reconstruct_weno5z(n, h, f, fl, fr) ! local variables are not implicit by default ! implicit none ! subroutine arguments ! integer , intent(in) :: n real(kind=8) , intent(in) :: h real(kind=8), dimension(n), intent(in) :: f real(kind=8), dimension(n), intent(out) :: fl, fr ! local variables ! integer :: i, im1, ip1, im2, ip2 real(kind=8) :: bl, bc, br, tt, df real(kind=8) :: al, ac, ar real(kind=8) :: wl, wc, wr, ww real(kind=8) :: ql, qc, qr ! local arrays for derivatives ! real(kind=8), dimension(n) :: dfm, dfp, df2 ! smoothness indicator coefficients ! real(kind=8), parameter :: c1 = 1.3d+01 / 1.2d+01, c2 = 2.5d-01 ! weight coefficients ! real(kind=8), parameter :: dl = 1.0d-01, dc = 6.0d-01, dr = 3.0d-01 ! interpolation coefficients ! real(kind=8), parameter :: a11 = 2.0d+00 / 6.0d+00 & , a12 = - 7.0d+00 / 6.0d+00 & , a13 = 1.1d+01 / 6.0d+00 real(kind=8), parameter :: a21 = - 1.0d+00 / 6.0d+00 & , a22 = 5.0d+00 / 6.0d+00 & , a23 = 2.0d+00 / 6.0d+00 real(kind=8), parameter :: a31 = 2.0d+00 / 6.0d+00 & , a32 = 5.0d+00 / 6.0d+00 & , a33 = - 1.0d+00 / 6.0d+00 ! !------------------------------------------------------------------------------- ! ! calculate the left and right derivatives ! do i = 1, n - 1 ip1 = i + 1 dfp(i ) = f(ip1) - f(i) dfm(ip1) = dfp(i) end do dfm(1) = dfp(1) dfp(n) = dfm(n) ! calculate the absolute value of the second derivative ! df2(:) = c1 * (dfp(:) - dfm(:))**2 ! iterate along the vector ! do i = 3, n - 2 ! prepare neighbour indices ! im2 = i - 2 im1 = i - 1 ip1 = i + 1 ip2 = i + 2 ! calculate βₖ (eqs. 9-11 in [1]) ! bl = df2(im1) + c2 * (3.0d+00 * dfm(i ) - dfm(im1))**2 bc = df2(i ) + c2 * ( dfp(i ) + dfm(i ))**2 br = df2(ip1) + c2 * (3.0d+00 * dfp(i ) - dfp(ip1))**2 ! calculate τ (below eq. 25 in [1]) ! tt = abs(br - bl) ! calculate αₖ (eq. 28 in [1]) ! al = 1.0d+00 + tt / (bl + eps) ac = 1.0d+00 + tt / (bc + eps) ar = 1.0d+00 + tt / (br + eps) ! calculate weights ! wl = dl * al wc = dc * ac wr = dr * ar ww = (wl + wr) + wc wl = wl / ww wr = wr / ww wc = 1.0d+00 - (wl + wr) ! calculate the interpolations of the left state ! ql = a11 * f(im2) + a12 * f(im1) + a13 * f(i ) qc = a21 * f(im1) + a22 * f(i ) + a23 * f(ip1) qr = a31 * f(i ) + a32 * f(ip1) + a33 * f(ip2) ! calculate the left state ! fl(i ) = (wl * ql + wr * qr) + wc * qc ! normalize weights ! wl = dl * ar wc = dc * ac wr = dr * al ww = (wl + wr) + wc wl = wl / ww wr = wr / ww wc = 1.0d+00 - (wl + wr) ! calculate the interpolations of the right state ! ql = a11 * f(ip2) + a12 * f(ip1) + a13 * f(i ) qc = a21 * f(ip1) + a22 * f(i ) + a23 * f(im1) qr = a31 * f(i ) + a32 * f(im1) + a33 * f(im2) ! calculate the right state ! fr(im1) = (wl * ql + wr * qr) + wc * qc end do ! i = 3, n - 2 ! update the interpolation of the first and last two points ! fl(1) = 0.5d+00 * (f(1) + f(2)) df = limiter_tvd(0.5d+00, dfm(2), dfp(2)) fr(1) = f(2) - df fl(2) = f(2) + df i = n - 1 df = limiter_tvd(0.5d+00, dfm(i), dfp(i)) fr(i-1) = f(i) - df fl(i) = f(i) + df fr(i) = 0.5d+00 * (f(i) + f(n)) fl(n) = f(n) fr(n) = f(n) !------------------------------------------------------------------------------- ! end subroutine reconstruct_weno5z ! !=============================================================================== ! ! subroutine RECONSTRUCT_WENO5YC: ! ------------------------------ ! ! Subroutine reconstructs the interface states using the fifth order ! Explicit Weighted Essentially Non-Oscillatory (WENO5) method with ! stencil weights by Yamaleev & Carpenter (2009). ! ! Arguments are described in subroutine reconstruct(). ! ! References: ! ! [1] Yamaleev, N. K. & Carpenter, H. C., ! "A Systematic Methodology for Constructing High-Order Energy Stable ! WENO Schemes" ! Journal of Computational Physics, ! 2009, vol. 228, pp. 4248-4272, ! http://dx.doi.org/10.1016/j.jcp.2009.03.002 ! !=============================================================================== ! subroutine reconstruct_weno5yc(n, h, f, fl, fr) ! local variables are not implicit by default ! implicit none ! subroutine arguments ! integer , intent(in) :: n real(kind=8) , intent(in) :: h real(kind=8), dimension(n), intent(in) :: f real(kind=8), dimension(n), intent(out) :: fl, fr ! local variables ! integer :: i, im1, ip1, im2, ip2 real(kind=8) :: bl, bc, br, tt, df real(kind=8) :: al, ac, ar real(kind=8) :: wl, wc, wr, ww real(kind=8) :: ql, qc, qr ! local arrays for derivatives ! real(kind=8), dimension(n) :: dfm, dfp, df2 ! smoothness indicator coefficients ! real(kind=8), parameter :: c1 = 1.3d+01 / 1.2d+01, c2 = 2.5d-01 ! weight coefficients ! real(kind=8), parameter :: dl = 1.0d-01, dc = 6.0d-01, dr = 3.0d-01 ! interpolation coefficients ! real(kind=8), parameter :: a11 = 2.0d+00 / 6.0d+00 & , a12 = - 7.0d+00 / 6.0d+00 & , a13 = 1.1d+01 / 6.0d+00 real(kind=8), parameter :: a21 = - 1.0d+00 / 6.0d+00 & , a22 = 5.0d+00 / 6.0d+00 & , a23 = 2.0d+00 / 6.0d+00 real(kind=8), parameter :: a31 = 2.0d+00 / 6.0d+00 & , a32 = 5.0d+00 / 6.0d+00 & , a33 = - 1.0d+00 / 6.0d+00 ! !------------------------------------------------------------------------------- ! ! calculate the left and right derivatives ! do i = 1, n - 1 ip1 = i + 1 dfp(i ) = f(ip1) - f(i) dfm(ip1) = dfp(i) end do dfm(1) = dfp(1) dfp(n) = dfm(n) ! calculate the absolute value of the second derivative ! df2(:) = c1 * (dfp(:) - dfm(:))**2 ! iterate along the vector ! do i = 3, n - 2 ! prepare neighbour indices ! im2 = i - 2 im1 = i - 1 ip1 = i + 1 ip2 = i + 2 ! calculate βₖ (eq. 19 in [1]) ! bl = df2(im1) + c2 * (3.0d+00 * dfm(i ) - dfm(im1))**2 bc = df2(i ) + c2 * ( dfp(i ) + dfm(i ))**2 br = df2(ip1) + c2 * (3.0d+00 * dfp(i ) - dfp(ip1))**2 ! calculate τ (below eq. 20 in [1]) ! tt = (6.0d+00 * f(i) - 4.0d+00 * (f(im1) + f(ip1)) & + (f(im2) + f(ip2)))**2 ! calculate αₖ (eqs. 18 or 58 in [1]) ! al = 1.0d+00 + tt / (bl + eps) ac = 1.0d+00 + tt / (bc + eps) ar = 1.0d+00 + tt / (br + eps) ! calculate weights ! wl = dl * al wc = dc * ac wr = dr * ar ww = (wl + wr) + wc wl = wl / ww wr = wr / ww wc = 1.0d+00 - (wl + wr) ! calculate the interpolations of the left state ! ql = a11 * f(im2) + a12 * f(im1) + a13 * f(i ) qc = a21 * f(im1) + a22 * f(i ) + a23 * f(ip1) qr = a31 * f(i ) + a32 * f(ip1) + a33 * f(ip2) ! calculate the left state ! fl(i ) = (wl * ql + wr * qr) + wc * qc ! normalize weights ! wl = dl * ar wc = dc * ac wr = dr * al ww = (wl + wr) + wc wl = wl / ww wr = wr / ww wc = 1.0d+00 - (wl + wr) ! calculate the interpolations of the right state ! ql = a11 * f(ip2) + a12 * f(ip1) + a13 * f(i ) qc = a21 * f(ip1) + a22 * f(i ) + a23 * f(im1) qr = a31 * f(i ) + a32 * f(im1) + a33 * f(im2) ! calculate the right state ! fr(im1) = (wl * ql + wr * qr) + wc * qc end do ! i = 3, n - 2 ! update the interpolation of the first and last two points ! fl(1) = 0.5d+00 * (f(1) + f(2)) df = limiter_tvd(0.5d+00, dfm(2), dfp(2)) fr(1) = f(2) - df fl(2) = f(2) + df i = n - 1 df = limiter_tvd(0.5d+00, dfm(i), dfp(i)) fr(i-1) = f(i) - df fl(i) = f(i) + df fr(i) = 0.5d+00 * (f(i) + f(n)) fl(n) = f(n) fr(n) = f(n) !------------------------------------------------------------------------------- ! end subroutine reconstruct_weno5yc ! !=============================================================================== ! ! subroutine RECONSTRUCT_WENO5NS: ! ------------------------------ ! ! Subroutine reconstructs the interface states using the fifth order ! Explicit Weighted Essentially Non-Oscillatory (WENO5) method with new ! smoothness indicators and stencil weights by Ha et al. (2013). ! ! Arguments are described in subroutine reconstruct(). ! ! References: ! ! [1] Ha, Y., Kim, C. H., Lee, Y. J., & Yoon, J., ! "An improved weighted essentially non-oscillatory scheme with a new ! smoothness indicator", ! Journal of Computational Physics, ! 2013, vol. 232, pp. 68-86 ! http://dx.doi.org/10.1016/j.jcp.2012.06.016 ! !=============================================================================== ! subroutine reconstruct_weno5ns(n, h, f, fl, fr) ! local variables are not implicit by default ! implicit none ! subroutine arguments ! integer , intent(in) :: n real(kind=8) , intent(in) :: h real(kind=8), dimension(n), intent(in) :: f real(kind=8), dimension(n), intent(out) :: fl, fr ! local variables ! integer :: i, im1, ip1, im2, ip2 real(kind=8) :: bl, bc, br real(kind=8) :: al, ac, ar, aa real(kind=8) :: wl, wc, wr real(kind=8) :: df, lq, l3, zt real(kind=8) :: ql, qc, qr ! local arrays for derivatives ! real(kind=8), dimension(n) :: dfm, dfp, df2 ! weight coefficients ! real(kind=8), parameter :: dl = 1.0d-01, dc = 6.0d-01, dr = 3.0d-01 ! interpolation coefficients ! real(kind=8), parameter :: a11 = 2.0d+00 / 6.0d+00 & , a12 = - 7.0d+00 / 6.0d+00 & , a13 = 1.1d+01 / 6.0d+00 real(kind=8), parameter :: a21 = - 1.0d+00 / 6.0d+00 & , a22 = 5.0d+00 / 6.0d+00 & , a23 = 2.0d+00 / 6.0d+00 real(kind=8), parameter :: a31 = 2.0d+00 / 6.0d+00 & , a32 = 5.0d+00 / 6.0d+00 & , a33 = - 1.0d+00 / 6.0d+00 ! the free parameter for smoothness indicators (see Eq. 3.6 in [1]) ! real(kind=8), parameter :: xi = 4.0d-01 ! !------------------------------------------------------------------------------- ! ! calculate the left and right derivatives ! do i = 1, n - 1 ip1 = i + 1 dfp(i ) = f(ip1) - f(i) dfm(ip1) = dfp(i) end do dfm(1) = dfp(1) dfp(n) = dfm(n) ! calculate the absolute value of the second derivative ! df2(:) = 0.5d+00 * abs(dfp(:) - dfm(:)) ! iterate along the vector ! do i = 3, n - 2 ! prepare neighbour indices ! im2 = i - 2 im1 = i - 1 ip1 = i + 1 ip2 = i + 2 ! calculate βₖ (eq. 3.6 in [1]) ! df = abs(dfp(i)) lq = xi * df bl = df2(im1) + xi * abs(2.0d+00 * dfm(i) - dfm(im1)) bc = df2(i ) + lq br = df2(ip1) + lq ! calculate ζ (below eq. 3.6 in [1]) ! l3 = df**3 zt = 0.5d+00 * ((bl - br)**2 + (l3 / (1.0d+00 + l3))**2) ! calculate αₖ (eq. 3.9 in [4]) ! al = dl * (1.0d+00 + zt / (bl + eps)**2) ac = dc * (1.0d+00 + zt / (bc + eps)**2) ar = dr * (1.0d+00 + zt / (br + eps)**2) ! calculate weights ! aa = (al + ar) + ac wl = al / aa wr = ar / aa wc = 1.0d+00 - (wl + wr) ! calculate the interpolations of the left state ! ql = a11 * f(im2) + a12 * f(im1) + a13 * f(i ) qc = a21 * f(im1) + a22 * f(i ) + a23 * f(ip1) qr = a31 * f(i ) + a32 * f(ip1) + a33 * f(ip2) ! calculate the left state ! fl(i ) = (wl * ql + wr * qr) + wc * qc ! calculate βₖ (eq. 3.6 in [1]) ! df = abs(dfm(i)) lq = xi * df bl = df2(ip1) + xi * abs(2.0d+00 * dfp(i) - dfp(ip1)) bc = df2(i ) + lq br = df2(im1) + lq ! calculate ζ (below eq. 3.6 in [1]) l3 = df**3 zt = 0.5d+00 * ((bl - br)**2 + (l3 / (1.0d+00 + l3))**2) ! calculate αₖ (eq. 3.9 in [4]) ! al = dl * (1.0d+00 + zt / (bl + eps)**2) ac = dc * (1.0d+00 + zt / (bc + eps)**2) ar = dr * (1.0d+00 + zt / (br + eps)**2) ! normalize weights ! aa = (al + ar) + ac wl = al / aa wr = ar / aa wc = 1.0d+00 - (wl + wr) ! calculate the interpolations of the right state ! ql = a11 * f(ip2) + a12 * f(ip1) + a13 * f(i ) qc = a21 * f(ip1) + a22 * f(i ) + a23 * f(im1) qr = a31 * f(i ) + a32 * f(im1) + a33 * f(im2) ! calculate the right state ! fr(im1) = (wl * ql + wr * qr) + wc * qc end do ! i = 3, n - 2 ! update the interpolation of the first and last two points ! fl(1) = 0.5d+00 * (f(1) + f(2)) df = limiter_tvd(0.5d+00, dfm(2), dfp(2)) fr(1) = f(2) - df fl(2) = f(2) + df i = n - 1 df = limiter_tvd(0.5d+00, dfm(i), dfp(i)) fr(i-1) = f(i) - df fl(i) = f(i) + df fr(i) = 0.5d+00 * (f(i) + f(n)) fl(n) = f(n) fr(n) = f(n) !------------------------------------------------------------------------------- ! end subroutine reconstruct_weno5ns ! !=============================================================================== ! ! subroutine RECONSTRUCT_CRWENO5Z: ! ------------------------------- ! ! Subroutine reconstructs the interface states using the fifth order ! Compact-Reconstruction Weighted Essentially Non-Oscillatory (CRWENO) ! method and smoothness indicators by Borges et al. (2008). ! ! Arguments are described in subroutine reconstruct(). ! ! References: ! ! [1] Ghosh, D. & Baeder, J. D., ! "Compact Reconstruction Schemes with Weighted ENO Limiting for ! Hyperbolic Conservation Laws" ! SIAM Journal on Scientific Computing, ! 2012, vol. 34, no. 3, pp. A1678-A1706, ! http://dx.doi.org/10.1137/110857659 ! [2] Ghosh, D. & Baeder, J. D., ! "Weighted Non-linear Compact Schemes for the Direct Numerical ! Simulation of Compressible, Turbulent Flows" ! Journal on Scientific Computing, ! 2014, ! http://dx.doi.org/10.1007/s10915-014-9818-0 ! [3] Borges, R., Carmona, M., Costa, B., & Don, W.-S., ! "An improved weighted essentially non-oscillatory scheme for ! hyperbolic conservation laws" ! Journal of Computational Physics, ! 2008, vol. 227, pp. 3191-3211, ! http://dx.doi.org/10.1016/j.jcp.2007.11.038 ! !=============================================================================== ! subroutine reconstruct_crweno5z(n, h, f, fl, fr) ! include external procedures ! use algebra , only : tridiag ! local variables are not implicit by default ! implicit none ! subroutine arguments ! integer , intent(in) :: n real(kind=8) , intent(in) :: h real(kind=8), dimension(n), intent(in) :: f real(kind=8), dimension(n), intent(out) :: fl, fr ! local variables ! integer :: i, im1, ip1, im2, ip2 real(kind=8) :: bl, bc, br, tt real(kind=8) :: wl, wc, wr, ww real(kind=8) :: ql, qc, qr ! local arrays for derivatives ! real(kind=8), dimension(n) :: dfm, dfp, df2 real(kind=8), dimension(n) :: al, ac, ar real(kind=8), dimension(n) :: u real(kind=8), dimension(n,2) :: a, b, c, r ! smoothness indicator coefficients ! real(kind=8), parameter :: c1 = 1.3d+01 / 1.2d+01, c2 = 2.5d-01 ! weight coefficients for implicit (c) and explicit (d) interpolations ! real(kind=8), parameter :: cl = 1.0d+00 / 9.0d+00 real(kind=8), parameter :: cc = 5.0d+00 / 9.0d+00 real(kind=8), parameter :: cr = 1.0d+00 / 3.0d+00 real(kind=8), parameter :: dl = 1.0d-01, dc = 6.0d-01, dr = 3.0d-01 ! implicit method coefficients ! real(kind=8), parameter :: dq = 5.0d-01 ! interpolation coefficients ! real(kind=8), parameter :: a11 = 2.0d+00 / 6.0d+00 & , a12 = - 7.0d+00 / 6.0d+00 & , a13 = 1.1d+01 / 6.0d+00 real(kind=8), parameter :: a21 = - 1.0d+00 / 6.0d+00 & , a22 = 5.0d+00 / 6.0d+00 & , a23 = 2.0d+00 / 6.0d+00 real(kind=8), parameter :: a31 = 2.0d+00 / 6.0d+00 & , a32 = 5.0d+00 / 6.0d+00 & , a33 = - 1.0d+00 / 6.0d+00 ! !------------------------------------------------------------------------------- ! ! calculate the left and right derivatives ! do i = 1, n - 1 ip1 = i + 1 dfp(i ) = f(ip1) - f(i) dfm(ip1) = dfp(i) end do dfm(1) = dfp(1) dfp(n) = dfm(n) ! calculate the absolute value of the second derivative ! df2(:) = c1 * (dfp(:) - dfm(:))**2 ! prepare smoothness indicators ! do i = 2, n - 1 ! prepare neighbour indices ! im1 = i - 1 ip1 = i + 1 ! calculate βₖ (eqs. 9-11 in [1]) ! bl = df2(im1) + c2 * (3.0d+00 * dfm(i ) - dfm(im1))**2 bc = df2(i ) + c2 * ( dfp(i ) + dfm(i ))**2 br = df2(ip1) + c2 * (3.0d+00 * dfp(i ) - dfp(ip1))**2 ! calculate τ (below eq. 25 in [1]) ! tt = abs(br - bl) ! calculate αₖ (eq. 28 in [1]) ! al(i) = 1.0d+00 + tt / (bl + eps) ac(i) = 1.0d+00 + tt / (bc + eps) ar(i) = 1.0d+00 + tt / (br + eps) end do ! i = 2, n - 1 ! prepare tridiagonal system coefficients ! do i = ng, n - ng + 1 ! prepare neighbour indices ! im1 = i - 1 ip1 = i + 1 ! calculate weights ! wl = cl * al(i) wc = cc * ac(i) wr = cr * ar(i) ww = (wl + wr) + wc wl = wl / ww wr = wr / ww wc = 1.0d+00 - (wl + wr) ! calculate tridiagonal matrix coefficients ! a(i,1) = 2.0d+00 * wl + wc b(i,1) = wl + 2.0d+00 * (wc + wr) c(i,1) = wr ! prepare right hand side of tridiagonal equation ! r(i,1) = (wl * f(im1) + (5.0d+00 * (wl + wc) + wr) * f(i ) & + (wc + 5.0d+00 * wr) * f(ip1)) * dq ! calculate weights ! wl = cl * ar(i) wc = cc * ac(i) wr = cr * al(i) ww = (wl + wr) + wc wl = wl / ww wr = wr / ww wc = 1.0d+00 - (wl + wr) ! calculate tridiagonal matrix coefficients ! a(i,2) = wr b(i,2) = wl + 2.0d+00 * (wc + wr) c(i,2) = 2.0d+00 * wl + wc ! prepare right hand side of tridiagonal equation ! r(i,2) = (wl * f(ip1) + (5.0d+00 * (wl + wc) + wr) * f(i ) & + (wc + 5.0d+00 * wr) * f(im1)) * dq end do ! i = ng, n - ng + 1 ! interpolate ghost zones using explicit solver (left-side reconstruction) ! do i = 2, ng ! prepare neighbour indices ! im2 = max(1, i - 2) im1 = i - 1 ip1 = i + 1 ip2 = i + 2 ! calculate weights ! wl = dl * al(i) wc = dc * ac(i) wr = dr * ar(i) ww = (wl + wr) + wc wl = wl / ww wr = wr / ww wc = 1.0d+00 - (wl + wr) ! calculate the interpolations of the left state ! ql = a11 * f(im2) + a12 * f(im1) + a13 * f(i ) qc = a21 * f(im1) + a22 * f(i ) + a23 * f(ip1) qr = a31 * f(i ) + a32 * f(ip1) + a33 * f(ip2) ! calculate the left state ! fl(i) = (wl * ql + wr * qr) + wc * qc ! prepare coefficients of the tridiagonal system ! a(i,1) = 0.0d+00 b(i,1) = 1.0d+00 c(i,1) = 0.0d+00 r(i,1) = fl(i) end do ! i = 2, ng a(1,1) = 0.0d+00 b(1,1) = 1.0d+00 c(1,1) = 0.0d+00 r(1,1) = 0.5d+00 * (f(1) + f(2)) ! interpolate ghost zones using explicit solver (left-side reconstruction) ! do i = n - ng, n - 1 ! prepare neighbour indices ! im2 = i - 2 im1 = i - 1 ip1 = i + 1 ip2 = min(n, i + 2) ! calculate weights ! wl = dl * al(i) wc = dc * ac(i) wr = dr * ar(i) ww = (wl + wr) + wc wl = wl / ww wr = wr / ww wc = 1.0d+00 - (wl + wr) ! calculate the interpolations of the left state ! ql = a11 * f(im2) + a12 * f(im1) + a13 * f(i ) qc = a21 * f(im1) + a22 * f(i ) + a23 * f(ip1) qr = a31 * f(i ) + a32 * f(ip1) + a33 * f(ip2) ! calculate the left state ! fl(i) = (wl * ql + wr * qr) + wc * qc ! prepare coefficients of the tridiagonal system ! a(i,1) = 0.0d+00 b(i,1) = 1.0d+00 c(i,1) = 0.0d+00 r(i,1) = fl(i) end do ! i = n - ng, n - 1 a(n,1) = 0.0d+00 b(n,1) = 1.0d+00 c(n,1) = 0.0d+00 r(n,1) = f(n) ! interpolate ghost zones using explicit solver (right-side reconstruction) ! do i = 2, ng + 1 ! prepare neighbour indices ! im2 = max(1, i - 2) im1 = i - 1 ip1 = i + 1 ip2 = i + 2 ! normalize weights ! wl = dl * ar(i) wc = dc * ac(i) wr = dr * al(i) ww = (wl + wr) + wc wl = wl / ww wr = wr / ww wc = 1.0d+00 - (wl + wr) ! calculate the interpolations of the right state ! ql = a11 * f(ip2) + a12 * f(ip1) + a13 * f(i ) qc = a21 * f(ip1) + a22 * f(i ) + a23 * f(im1) qr = a31 * f(i ) + a32 * f(im1) + a33 * f(im2) ! calculate the right state ! fr(i) = (wl * ql + wr * qr) + wc * qc ! prepare coefficients of the tridiagonal system ! a(i,2) = 0.0d+00 b(i,2) = 1.0d+00 c(i,2) = 0.0d+00 r(i,2) = fr(i) end do ! i = 2, ng + 1 a(1,2) = 0.0d+00 b(1,2) = 1.0d+00 c(1,2) = 0.0d+00 r(1,2) = f(1) ! interpolate ghost zones using explicit solver (right-side reconstruction) ! do i = n - ng + 1, n - 1 ! prepare neighbour indices ! im2 = max(1, i - 2) im1 = max(1, i - 1) ip1 = min(n, i + 1) ip2 = min(n, i + 2) ! normalize weights ! wl = dl * ar(i) wc = dc * ac(i) wr = dr * al(i) ww = (wl + wr) + wc wl = wl / ww wr = wr / ww wc = 1.0d+00 - (wl + wr) ! calculate the interpolations of the right state ! ql = a11 * f(ip2) + a12 * f(ip1) + a13 * f(i ) qc = a21 * f(ip1) + a22 * f(i ) + a23 * f(im1) qr = a31 * f(i ) + a32 * f(im1) + a33 * f(im2) ! calculate the right state ! fr(i) = (wl * ql + wr * qr) + wc * qc ! prepare coefficients of the tridiagonal system ! a(i,2) = 0.0d+00 b(i,2) = 1.0d+00 c(i,2) = 0.0d+00 r(i,2) = fr(i) end do ! i = n - ng + 1, n - 1 a(n,2) = 0.0d+00 b(n,2) = 1.0d+00 c(n,2) = 0.0d+00 r(n,2) = 0.5d+00 * (f(n-1) + f(n)) ! solve the tridiagonal system of equations for the left-side interpolation ! call tridiag(n, a(1:n,1), b(1:n,1), c(1:n,1), r(1:n,1), u(1:n)) ! substitute the left-side values ! fl(1:n ) = u(1:n) ! solve the tridiagonal system of equations for the left-side interpolation ! call tridiag(n, a(1:n,2), b(1:n,2), c(1:n,2), r(1:n,2), u(1:n)) ! substitute the right-side values ! fr(1:n-1) = u(2:n) ! update the interpolation of the first and last points ! i = n - 1 fl(1) = 0.5d+00 * (f(1) + f(2)) fr(i) = 0.5d+00 * (f(i) + f(n)) fl(n) = f(n) fr(n) = f(n) !------------------------------------------------------------------------------- ! end subroutine reconstruct_crweno5z ! !=============================================================================== ! ! subroutine RECONSTRUCT_CRWENO5YC: ! -------------------------------- ! ! Subroutine reconstructs the interface states using the fifth order ! Compact-Reconstruction Weighted Essentially Non-Oscillatory (CRWENO) ! method and smoothness indicators by Yamaleev & Carpenter (2009). ! ! Arguments are described in subroutine reconstruct(). ! ! References: ! ! [1] Ghosh, D. & Baeder, J. D., ! "Compact Reconstruction Schemes with Weighted ENO Limiting for ! Hyperbolic Conservation Laws" ! SIAM Journal on Scientific Computing, ! 2012, vol. 34, no. 3, pp. A1678-A1706, ! http://dx.doi.org/10.1137/110857659 ! [2] Ghosh, D. & Baeder, J. D., ! "Weighted Non-linear Compact Schemes for the Direct Numerical ! Simulation of Compressible, Turbulent Flows" ! Journal on Scientific Computing, ! 2014, ! http://dx.doi.org/10.1007/s10915-014-9818-0 ! [3] Yamaleev, N. K. & Carpenter, H. C., ! "A Systematic Methodology for Constructing High-Order Energy Stable ! WENO Schemes" ! Journal of Computational Physics, ! 2009, vol. 228, pp. 4248-4272, ! http://dx.doi.org/10.1016/j.jcp.2009.03.002 ! !=============================================================================== ! subroutine reconstruct_crweno5yc(n, h, f, fl, fr) ! include external procedures ! use algebra , only : tridiag ! local variables are not implicit by default ! implicit none ! subroutine arguments ! integer , intent(in) :: n real(kind=8) , intent(in) :: h real(kind=8), dimension(n), intent(in) :: f real(kind=8), dimension(n), intent(out) :: fl, fr ! local variables ! integer :: i, im1, ip1, im2, ip2 real(kind=8) :: bl, bc, br, tt real(kind=8) :: wl, wc, wr, ww real(kind=8) :: ql, qc, qr ! local arrays for derivatives ! real(kind=8), dimension(n) :: dfm, dfp, df2 real(kind=8), dimension(n) :: al, ac, ar real(kind=8), dimension(n) :: u real(kind=8), dimension(n,2) :: a, b, c, r ! smoothness indicator coefficients ! real(kind=8), parameter :: c1 = 1.3d+01 / 1.2d+01, c2 = 2.5d-01 ! weight coefficients for implicit (c) and explicit (d) interpolations ! real(kind=8), parameter :: cl = 1.0d+00 / 9.0d+00 real(kind=8), parameter :: cc = 5.0d+00 / 9.0d+00 real(kind=8), parameter :: cr = 1.0d+00 / 3.0d+00 real(kind=8), parameter :: dl = 1.0d-01, dc = 6.0d-01, dr = 3.0d-01 ! implicit method coefficients ! real(kind=8), parameter :: dq = 5.0d-01 ! interpolation coefficients ! real(kind=8), parameter :: a11 = 2.0d+00 / 6.0d+00 & , a12 = - 7.0d+00 / 6.0d+00 & , a13 = 1.1d+01 / 6.0d+00 real(kind=8), parameter :: a21 = - 1.0d+00 / 6.0d+00 & , a22 = 5.0d+00 / 6.0d+00 & , a23 = 2.0d+00 / 6.0d+00 real(kind=8), parameter :: a31 = 2.0d+00 / 6.0d+00 & , a32 = 5.0d+00 / 6.0d+00 & , a33 = - 1.0d+00 / 6.0d+00 ! !------------------------------------------------------------------------------- ! ! calculate the left and right derivatives ! do i = 1, n - 1 ip1 = i + 1 dfp(i ) = f(ip1) - f(i) dfm(ip1) = dfp(i) end do dfm(1) = dfp(1) dfp(n) = dfm(n) ! calculate the absolute value of the second derivative ! df2(:) = c1 * (dfp(:) - dfm(:))**2 ! prepare smoothness indicators ! do i = 2, n - 1 ! prepare neighbour indices ! im2 = max(1, i - 2) im1 = i - 1 ip1 = i + 1 ip2 = min(n, i + 2) ! calculate βₖ (eqs. 9-11 in [1]) ! bl = df2(im1) + c2 * (3.0d+00 * dfm(i ) - dfm(im1))**2 bc = df2(i ) + c2 * ( dfp(i ) + dfm(i ))**2 br = df2(ip1) + c2 * (3.0d+00 * dfp(i ) - dfp(ip1))**2 ! calculate τ (below eq. 64 in [3]) ! tt = (6.0d+00 * f(i) + (f(im2) + f(ip2)) & - 4.0d+00 * (f(im1) + f(ip1)))**2 ! calculate αₖ (eq. 28 in [1]) ! al(i) = 1.0d+00 + tt / (bl + eps) ac(i) = 1.0d+00 + tt / (bc + eps) ar(i) = 1.0d+00 + tt / (br + eps) end do ! i = 2, n - 1 ! prepare tridiagonal system coefficients ! do i = ng, n - ng + 1 ! prepare neighbour indices ! im1 = i - 1 ip1 = i + 1 ! calculate weights ! wl = cl * al(i) wc = cc * ac(i) wr = cr * ar(i) ww = (wl + wr) + wc wl = wl / ww wr = wr / ww wc = 1.0d+00 - (wl + wr) ! calculate tridiagonal matrix coefficients ! a(i,1) = 2.0d+00 * wl + wc b(i,1) = wl + 2.0d+00 * (wc + wr) c(i,1) = wr ! prepare right hand side of tridiagonal equation ! r(i,1) = (wl * f(im1) + (5.0d+00 * (wl + wc) + wr) * f(i ) & + (wc + 5.0d+00 * wr) * f(ip1)) * dq ! calculate weights ! wl = cl * ar(i) wc = cc * ac(i) wr = cr * al(i) ww = (wl + wr) + wc wl = wl / ww wr = wr / ww wc = 1.0d+00 - (wl + wr) ! calculate tridiagonal matrix coefficients ! a(i,2) = wr b(i,2) = wl + 2.0d+00 * (wc + wr) c(i,2) = 2.0d+00 * wl + wc ! prepare right hand side of tridiagonal equation ! r(i,2) = (wl * f(ip1) + (5.0d+00 * (wl + wc) + wr) * f(i ) & + (wc + 5.0d+00 * wr) * f(im1)) * dq end do ! i = ng, n - ng + 1 ! interpolate ghost zones using explicit solver (left-side reconstruction) ! do i = 2, ng ! prepare neighbour indices ! im2 = max(1, i - 2) im1 = i - 1 ip1 = i + 1 ip2 = i + 2 ! calculate weights ! wl = dl * al(i) wc = dc * ac(i) wr = dr * ar(i) ww = (wl + wr) + wc wl = wl / ww wr = wr / ww wc = 1.0d+00 - (wl + wr) ! calculate the interpolations of the left state ! ql = a11 * f(im2) + a12 * f(im1) + a13 * f(i ) qc = a21 * f(im1) + a22 * f(i ) + a23 * f(ip1) qr = a31 * f(i ) + a32 * f(ip1) + a33 * f(ip2) ! calculate the left state ! fl(i) = (wl * ql + wr * qr) + wc * qc ! prepare coefficients of the tridiagonal system ! a(i,1) = 0.0d+00 b(i,1) = 1.0d+00 c(i,1) = 0.0d+00 r(i,1) = fl(i) end do ! i = 2, ng a(1,1) = 0.0d+00 b(1,1) = 1.0d+00 c(1,1) = 0.0d+00 r(1,1) = 0.5d+00 * (f(1) + f(2)) ! interpolate ghost zones using explicit solver (left-side reconstruction) ! do i = n - ng, n - 1 ! prepare neighbour indices ! im2 = i - 2 im1 = i - 1 ip1 = i + 1 ip2 = min(n, i + 2) ! calculate weights ! wl = dl * al(i) wc = dc * ac(i) wr = dr * ar(i) ww = (wl + wr) + wc wl = wl / ww wr = wr / ww wc = 1.0d+00 - (wl + wr) ! calculate the interpolations of the left state ! ql = a11 * f(im2) + a12 * f(im1) + a13 * f(i ) qc = a21 * f(im1) + a22 * f(i ) + a23 * f(ip1) qr = a31 * f(i ) + a32 * f(ip1) + a33 * f(ip2) ! calculate the left state ! fl(i) = (wl * ql + wr * qr) + wc * qc ! prepare coefficients of the tridiagonal system ! a(i,1) = 0.0d+00 b(i,1) = 1.0d+00 c(i,1) = 0.0d+00 r(i,1) = fl(i) end do ! i = n - ng, n - 1 a(n,1) = 0.0d+00 b(n,1) = 1.0d+00 c(n,1) = 0.0d+00 r(n,1) = f(n) ! interpolate ghost zones using explicit solver (right-side reconstruction) ! do i = 2, ng + 1 ! prepare neighbour indices ! im2 = max(1, i - 2) im1 = i - 1 ip1 = i + 1 ip2 = i + 2 ! normalize weights ! wl = dl * ar(i) wc = dc * ac(i) wr = dr * al(i) ww = (wl + wr) + wc wl = wl / ww wr = wr / ww wc = 1.0d+00 - (wl + wr) ! calculate the interpolations of the right state ! ql = a11 * f(ip2) + a12 * f(ip1) + a13 * f(i ) qc = a21 * f(ip1) + a22 * f(i ) + a23 * f(im1) qr = a31 * f(i ) + a32 * f(im1) + a33 * f(im2) ! calculate the right state ! fr(i) = (wl * ql + wr * qr) + wc * qc ! prepare coefficients of the tridiagonal system ! a(i,2) = 0.0d+00 b(i,2) = 1.0d+00 c(i,2) = 0.0d+00 r(i,2) = fr(i) end do ! i = 2, ng + 1 a(1,2) = 0.0d+00 b(1,2) = 1.0d+00 c(1,2) = 0.0d+00 r(1,2) = f(1) ! interpolate ghost zones using explicit solver (right-side reconstruction) ! do i = n - ng + 1, n - 1 ! prepare neighbour indices ! im2 = i - 2 im1 = i - 1 ip1 = i + 1 ip2 = min(n, i + 2) ! normalize weights ! wl = dl * ar(i) wc = dc * ac(i) wr = dr * al(i) ww = (wl + wr) + wc wl = wl / ww wr = wr / ww wc = 1.0d+00 - (wl + wr) ! calculate the interpolations of the right state ! ql = a11 * f(ip2) + a12 * f(ip1) + a13 * f(i ) qc = a21 * f(ip1) + a22 * f(i ) + a23 * f(im1) qr = a31 * f(i ) + a32 * f(im1) + a33 * f(im2) ! calculate the right state ! fr(i) = (wl * ql + wr * qr) + wc * qc ! prepare coefficients of the tridiagonal system ! a(i,2) = 0.0d+00 b(i,2) = 1.0d+00 c(i,2) = 0.0d+00 r(i,2) = fr(i) end do ! i = n - ng + 1, n - 1 a(n,2) = 0.0d+00 b(n,2) = 1.0d+00 c(n,2) = 0.0d+00 r(n,2) = 0.5d+00 * (f(n-1) + f(n)) ! solve the tridiagonal system of equations for the left-side interpolation ! call tridiag(n, a(1:n,1), b(1:n,1), c(1:n,1), r(1:n,1), u(1:n)) ! substitute the left-side values ! fl(1:n ) = u(1:n) ! solve the tridiagonal system of equations for the left-side interpolation ! call tridiag(n, a(1:n,2), b(1:n,2), c(1:n,2), r(1:n,2), u(1:n)) ! substitute the right-side values ! fr(1:n-1) = u(2:n) ! update the interpolation of the first and last points ! i = n - 1 fl(1) = 0.5d+00 * (f(1) + f(2)) fr(i) = 0.5d+00 * (f(i) + f(n)) fl(n) = f(n) fr(n) = f(n) !------------------------------------------------------------------------------- ! end subroutine reconstruct_crweno5yc ! !=============================================================================== ! ! subroutine RECONSTRUCT_CRWENO5NS: ! -------------------------------- ! ! Subroutine reconstructs the interface states using the fifth order ! Compact-Reconstruction Weighted Essentially Non-Oscillatory (CRWENO) ! method combined with the smoothness indicators by Ha et al. (2013). ! ! Arguments are described in subroutine reconstruct(). ! ! References: ! ! [1] Ghosh, D. & Baeder, J. D., ! "Compact Reconstruction Schemes with Weighted ENO Limiting for ! Hyperbolic Conservation Laws" ! SIAM Journal on Scientific Computing, ! 2012, vol. 34, no. 3, pp. A1678-A1706, ! http://dx.doi.org/10.1137/110857659 ! [2] Ghosh, D. & Baeder, J. D., ! "Weighted Non-linear Compact Schemes for the Direct Numerical ! Simulation of Compressible, Turbulent Flows" ! Journal on Scientific Computing, ! 2014, ! http://dx.doi.org/10.1007/s10915-014-9818-0 ! [3] Ha, Y., Kim, C. H., Lee, Y. J., & Yoon, J., ! "An improved weighted essentially non-oscillatory scheme with a new ! smoothness indicator", ! Journal of Computational Physics, ! 2013, vol. 232, pp. 68-86 ! http://dx.doi.org/10.1016/j.jcp.2012.06.016 ! !=============================================================================== ! subroutine reconstruct_crweno5ns(n, h, f, fl, fr) ! include external procedures ! use algebra , only : tridiag ! local variables are not implicit by default ! implicit none ! subroutine arguments ! integer , intent(in) :: n real(kind=8) , intent(in) :: h real(kind=8), dimension(n), intent(in) :: f real(kind=8), dimension(n), intent(out) :: fl, fr ! local variables ! integer :: i, im1, ip1, im2, ip2 real(kind=8) :: bl, bc, br, tt real(kind=8) :: wl, wc, wr, ww real(kind=8) :: df, lq, l3, zt real(kind=8) :: ql, qc, qr ! local arrays for derivatives ! real(kind=8), dimension(n) :: dfm, dfp, df2 real(kind=8), dimension(n,2) :: al, ac, ar real(kind=8), dimension(n) :: u real(kind=8), dimension(n,2) :: a, b, c, r ! the free parameter for smoothness indicators (see eq. 3.6 in [3]) ! real(kind=8), parameter :: xi = 4.0d-01 ! weight coefficients for implicit (c) and explicit (d) interpolations ! real(kind=8), parameter :: cl = 1.0d+00 / 9.0d+00 real(kind=8), parameter :: cc = 5.0d+00 / 9.0d+00 real(kind=8), parameter :: cr = 1.0d+00 / 3.0d+00 real(kind=8), parameter :: dl = 1.0d-01, dc = 6.0d-01, dr = 3.0d-01 ! implicit method coefficients ! real(kind=8), parameter :: dq = 5.0d-01 ! 3rd order interpolation coefficients for three stencils ! real(kind=8), parameter :: a11 = 2.0d+00 / 6.0d+00 & , a12 = - 7.0d+00 / 6.0d+00 & , a13 = 1.1d+01 / 6.0d+00 real(kind=8), parameter :: a21 = - 1.0d+00 / 6.0d+00 & , a22 = 5.0d+00 / 6.0d+00 & , a23 = 2.0d+00 / 6.0d+00 real(kind=8), parameter :: a31 = 2.0d+00 / 6.0d+00 & , a32 = 5.0d+00 / 6.0d+00 & , a33 = - 1.0d+00 / 6.0d+00 ! !------------------------------------------------------------------------------- ! ! calculate the left and right derivatives ! do i = 1, n - 1 ip1 = i + 1 dfp(i ) = f(ip1) - f(i) dfm(ip1) = dfp(i) end do dfm(1) = dfp(1) dfp(n) = dfm(n) ! calculate the absolute value of the second derivative ! df2(:) = 0.5d+00 * abs(dfp(:) - dfm(:)) ! prepare smoothness indicators ! do i = 2, n - 1 ! prepare neighbour indices ! im1 = i - 1 ip1 = i + 1 ! calculate βₖ ! df = abs(dfp(i)) lq = xi * df bl = df2(im1) + xi * abs(2.0d+00 * dfm(i) - dfm(im1)) bc = df2(i ) + lq br = df2(ip1) + lq ! calculate ζ ! l3 = df**3 zt = 0.5d+00 * ((bl - br)**2 + (l3 / (1.0d+00 + l3))**2) ! calculate αₖ ! al(i,1) = 1.0d+00 + zt / (bl + eps)**2 ac(i,1) = 1.0d+00 + zt / (bc + eps)**2 ar(i,1) = 1.0d+00 + zt / (br + eps)**2 ! calculate βₖ ! df = abs(dfm(i)) lq = xi * df bl = df2(im1) + lq bc = df2(i ) + lq br = df2(ip1) + xi * abs(2.0d+00 * dfp(i) - dfp(ip1)) ! calculate ζ l3 = df**3 zt = 0.5d+00 * ((bl - br)**2 + (l3 / (1.0d+00 + l3))**2) ! calculate αₖ ! al(i,2) = 1.0d+00 + zt / (bl + eps)**2 ac(i,2) = 1.0d+00 + zt / (bc + eps)**2 ar(i,2) = 1.0d+00 + zt / (br + eps)**2 end do ! i = 2, n - 1 ! prepare tridiagonal system coefficients ! do i = ng, n - ng + 1 ! prepare neighbour indices ! im1 = i - 1 ip1 = i + 1 ! calculate weights ! wl = cl * al(i,1) wc = cc * ac(i,1) wr = cr * ar(i,1) ww = (wl + wr) + wc wl = wl / ww wr = wr / ww wc = 1.0d+00 - (wl + wr) ! calculate tridiagonal matrix coefficients ! a(i,1) = 2.0d+00 * wl + wc b(i,1) = wl + 2.0d+00 * (wc + wr) c(i,1) = wr ! prepare right hand side of tridiagonal equation ! r(i,1) = (wl * f(im1) + (5.0d+00 * (wl + wc) + wr) * f(i ) & + (wc + 5.0d+00 * wr) * f(ip1)) * dq ! calculate weights ! wl = cl * ar(i,2) wc = cc * ac(i,2) wr = cr * al(i,2) ww = (wl + wr) + wc wl = wl / ww wr = wr / ww wc = 1.0d+00 - (wl + wr) ! calculate tridiagonal matrix coefficients ! a(i,2) = wr b(i,2) = wl + 2.0d+00 * (wc + wr) c(i,2) = 2.0d+00 * wl + wc ! prepare right hand side of tridiagonal equation ! r(i,2) = (wl * f(ip1) + (5.0d+00 * (wl + wc) + wr) * f(i ) & + (wc + 5.0d+00 * wr) * f(im1)) * dq end do ! i = ng, n - ng + 1 ! interpolate ghost zones using explicit solver (left-side reconstruction) ! do i = 2, ng ! prepare neighbour indices ! im2 = max(1, i - 2) im1 = i - 1 ip1 = i + 1 ip2 = i + 2 ! calculate weights ! wl = dl * al(i,1) wc = dc * ac(i,1) wr = dr * ar(i,1) ww = (wl + wr) + wc wl = wl / ww wr = wr / ww wc = 1.0d+00 - (wl + wr) ! calculate the interpolations of the left state ! ql = a11 * f(im2) + a12 * f(im1) + a13 * f(i ) qc = a21 * f(im1) + a22 * f(i ) + a23 * f(ip1) qr = a31 * f(i ) + a32 * f(ip1) + a33 * f(ip2) ! calculate the left state ! fl(i) = (wl * ql + wr * qr) + wc * qc ! prepare coefficients of the tridiagonal system ! a(i,1) = 0.0d+00 b(i,1) = 1.0d+00 c(i,1) = 0.0d+00 r(i,1) = fl(i) end do ! i = 2, ng a(1,1) = 0.0d+00 b(1,1) = 1.0d+00 c(1,1) = 0.0d+00 r(1,1) = 0.5d+00 * (f(1) + f(2)) ! interpolate ghost zones using explicit solver (left-side reconstruction) ! do i = n - ng, n - 1 ! prepare neighbour indices ! im2 = i - 2 im1 = i - 1 ip1 = i + 1 ip2 = min(n, i + 2) ! calculate weights ! wl = dl * al(i,1) wc = dc * ac(i,1) wr = dr * ar(i,1) ww = (wl + wr) + wc wl = wl / ww wr = wr / ww wc = 1.0d+00 - (wl + wr) ! calculate the interpolations of the left state ! ql = a11 * f(im2) + a12 * f(im1) + a13 * f(i ) qc = a21 * f(im1) + a22 * f(i ) + a23 * f(ip1) qr = a31 * f(i ) + a32 * f(ip1) + a33 * f(ip2) ! calculate the left state ! fl(i) = (wl * ql + wr * qr) + wc * qc ! prepare coefficients of the tridiagonal system ! a(i,1) = 0.0d+00 b(i,1) = 1.0d+00 c(i,1) = 0.0d+00 r(i,1) = fl(i) end do ! i = n - ng, n - 1 a(n,1) = 0.0d+00 b(n,1) = 1.0d+00 c(n,1) = 0.0d+00 r(n,1) = f(n) ! interpolate ghost zones using explicit solver (right-side reconstruction) ! do i = 2, ng + 1 ! prepare neighbour indices ! im2 = max(1, i - 2) im1 = i - 1 ip1 = i + 1 ip2 = i + 2 ! normalize weights ! wl = dl * ar(i,2) wc = dc * ac(i,2) wr = dr * al(i,2) ww = (wl + wr) + wc wl = wl / ww wr = wr / ww wc = 1.0d+00 - (wl + wr) ! calculate the interpolations of the right state ! ql = a11 * f(ip2) + a12 * f(ip1) + a13 * f(i ) qc = a21 * f(ip1) + a22 * f(i ) + a23 * f(im1) qr = a31 * f(i ) + a32 * f(im1) + a33 * f(im2) ! calculate the right state ! fr(i) = (wl * ql + wr * qr) + wc * qc ! prepare coefficients of the tridiagonal system ! a(i,2) = 0.0d+00 b(i,2) = 1.0d+00 c(i,2) = 0.0d+00 r(i,2) = fr(i) end do ! i = 2, ng + 1 a(1,2) = 0.0d+00 b(1,2) = 1.0d+00 c(1,2) = 0.0d+00 r(1,2) = f(1) ! interpolate ghost zones using explicit solver (right-side reconstruction) ! do i = n - ng + 1, n - 1 ! prepare neighbour indices ! im2 = i - 2 im1 = i - 1 ip1 = i + 1 ip2 = min(n, i + 2) ! normalize weights ! wl = dl * ar(i,2) wc = dc * ac(i,2) wr = dr * al(i,2) ww = (wl + wr) + wc wl = wl / ww wr = wr / ww wc = 1.0d+00 - (wl + wr) ! calculate the interpolations of the right state ! ql = a11 * f(ip2) + a12 * f(ip1) + a13 * f(i ) qc = a21 * f(ip1) + a22 * f(i ) + a23 * f(im1) qr = a31 * f(i ) + a32 * f(im1) + a33 * f(im2) ! calculate the right state ! fr(i) = (wl * ql + wr * qr) + wc * qc ! prepare coefficients of the tridiagonal system ! a(i,2) = 0.0d+00 b(i,2) = 1.0d+00 c(i,2) = 0.0d+00 r(i,2) = fr(i) end do ! i = n - ng + 1, n - 1 a(n,2) = 0.0d+00 b(n,2) = 1.0d+00 c(n,2) = 0.0d+00 r(n,2) = 0.5d+00 * (f(n-1) + f(n)) ! solve the tridiagonal system of equations for the left-side interpolation ! call tridiag(n, a(1:n,1), b(1:n,1), c(1:n,1), r(1:n,1), u(1:n)) ! substitute the left-side values ! fl(1:n ) = u(1:n) ! solve the tridiagonal system of equations for the left-side interpolation ! call tridiag(n, a(1:n,2), b(1:n,2), c(1:n,2), r(1:n,2), u(1:n)) ! substitute the right-side values ! fr(1:n-1) = u(2:n) ! update the interpolation of the first and last points ! i = n - 1 fl(1) = 0.5d+00 * (f(1) + f(2)) fr(i) = 0.5d+00 * (f(i) + f(n)) fl(n) = f(n) fr(n) = f(n) !------------------------------------------------------------------------------- ! end subroutine reconstruct_crweno5ns ! !=============================================================================== ! ! subroutine RECONSTRUCT_MP5: ! -------------------------- ! ! Subroutine reconstructs the interface states using the fifth order ! Monotonicity Preserving (MP) method. ! ! Arguments are described in subroutine reconstruct(). ! ! References: ! ! [1] Suresh, A. & Huynh, H. T., ! "Accurate Monotonicity-Preserving Schemes with Runge-Kutta ! Time Stepping" ! Journal on Computational Physics, ! 1997, vol. 136, pp. 83-99, ! http://dx.doi.org/10.1006/jcph.1997.5745 ! [2] He, ZhiWei, Li, XinLiang, Fu, DeXun, & Ma, YanWen, ! "A 5th order monotonicity-preserving upwind compact difference ! scheme", ! Science China Physics, Mechanics and Astronomy, ! Volume 54, Issue 3, pp. 511-522, ! http://dx.doi.org/10.1007/s11433-010-4220-x ! !=============================================================================== ! subroutine reconstruct_mp5(n, h, f, fl, fr) ! local variables are not implicit by default ! implicit none ! subroutine arguments ! integer , intent(in) :: n real(kind=8) , intent(in) :: h real(kind=8), dimension(n), intent(in) :: f real(kind=8), dimension(n), intent(out) :: fl, fr ! local variables ! integer :: i, im1, ip1, im2, ip2 real(kind=8) :: df, ds, dc0, dc4, dm1, dp1, dml, dmr real(kind=8) :: flc, fmd, fmp, fmn, fmx, ful real(kind=8) :: sigma ! local arrays for derivatives ! real(kind=8), dimension(n) :: dfm, dfp ! !------------------------------------------------------------------------------- ! ! calculate the left and right derivatives ! do i = 1, n - 1 ip1 = i + 1 dfp(i ) = f(ip1) - f(i) dfm(ip1) = dfp(i) end do dfm(1) = dfp(1) dfp(n) = dfm(n) ! obtain the face values using high order interpolation ! do i = 2, n - 1 im2 = max(1, i - 2) im1 = i - 1 ip1 = i + 1 ip2 = min(n, i + 2) fl(i) = (4.7d+01 * f(i ) + (2.7d+01 * f(ip1) - 1.3d+01 * f(im1)) & - (3.0d+00 * f(ip2) - 2.0d+00 * f(im2))) & / 6.0d+01 fr(i) = (4.7d+01 * f(i ) + (2.7d+01 * f(im1) - 1.3d+01 * f(ip1)) & - (3.0d+00 * f(im2) - 2.0d+00 * f(ip2))) & / 6.0d+01 end do ! i = 2, n - 1 ! apply monotonicity preserving limiting ! do i = 2, n - 1 im1 = i - 1 ip1 = i + 1 if (dfm(i) * dfp(i) >= 0.0d+00) then sigma = kappa else sigma = kbeta end if ! get the limiting condition for the left state ! df = sigma * dfm(i) fmp = f(i) + minmod(dfp(i), df) ds = (fl(i) - f(i)) * (fl(i) - fmp) ! limit the left state ! if (ds > eps) then dm1 = dfp(im1) - dfm(im1) dc0 = dfp(i ) - dfm(i ) dp1 = dfp(ip1) - dfm(ip1) dc4 = 4.0d+00 * dc0 dml = 0.5d+00 * minmod4(dc4 - dm1, 4.0d+00 * dm1 - dc0, dc0, dm1) dmr = 0.5d+00 * minmod4(dc4 - dp1, 4.0d+00 * dp1 - dc0, dc0, dp1) fmd = f(i) + 0.5d+00 * dfp(i) - dmr ful = f(i) + df flc = f(i) + 0.5d+00 * df + dml fmx = max(min(f(i), f(ip1), fmd), min(f(i), ful, flc)) fmn = min(max(f(i), f(ip1), fmd), max(f(i), ful, flc)) fl(i) = median(fl(i), fmn, fmx) end if ! get the limiting condition for the right state ! df = sigma * dfp(i) fmp = f(i) - minmod(dfm(i), df) ds = (fr(i) - f(i)) * (fr(i) - fmp) ! limit the right state ! if (ds > eps) then dm1 = dfp(im1) - dfm(im1) dc0 = dfp(i ) - dfm(i ) dp1 = dfp(ip1) - dfm(ip1) dc4 = 4.0d+00 * dc0 dml = 0.5d+00 * minmod4(dc4 - dm1, 4.0d+00 * dm1 - dc0, dc0, dm1) dmr = 0.5d+00 * minmod4(dc4 - dp1, 4.0d+00 * dp1 - dc0, dc0, dp1) fmd = f(i) - 0.5d+00 * dfm(i) - dml ful = f(i) - df flc = f(i) - 0.5d+00 * df + dmr fmx = max(min(f(i), f(im1), fmd), min(f(i), ful, flc)) fmn = min(max(f(i), f(im1), fmd), max(f(i), ful, flc)) fr(i) = median(fr(i), fmn, fmx) end if ! shift the right state ! fr(im1) = fr(i) end do ! n = 2, n - 1 ! update the interpolation of the first and last points ! i = n - 1 fl(1) = 0.5d+00 * (f(1) + f(2)) fr(i) = 0.5d+00 * (f(i) + f(n)) fl(n) = f(n) fr(n) = f(n) !------------------------------------------------------------------------------- ! end subroutine reconstruct_mp5 ! !=============================================================================== ! ! subroutine RECONSTRUCT_CRMP5: ! ---------------------------- ! ! Subroutine reconstructs the interface states using the fifth order ! Compact Reconstruction Monotonicity Preserving (CRMP) method. ! ! Arguments are described in subroutine reconstruct(). ! ! References: ! ! [1] Suresh, A. & Huynh, H. T., ! "Accurate Monotonicity-Preserving Schemes with Runge-Kutta ! Time Stepping" ! Journal on Computational Physics, ! 1997, vol. 136, pp. 83-99, ! http://dx.doi.org/10.1006/jcph.1997.5745 ! [2] He, ZhiWei, Li, XinLiang, Fu, DeXun, & Ma, YanWen, ! "A 5th order monotonicity-preserving upwind compact difference ! scheme", ! Science China Physics, Mechanics and Astronomy, ! Volume 54, Issue 3, pp. 511-522, ! http://dx.doi.org/10.1007/s11433-010-4220-x ! !=============================================================================== ! subroutine reconstruct_crmp5(n, h, f, fl, fr) ! include external procedures ! use algebra , only : tridiag ! local variables are not implicit by default ! implicit none ! subroutine arguments ! integer , intent(in) :: n real(kind=8) , intent(in) :: h real(kind=8), dimension(n), intent(in) :: f real(kind=8), dimension(n), intent(out) :: fl, fr ! local variables ! integer :: i, im1, ip1, im2, ip2 real(kind=8) :: df, ds, dc0, dc4, dm1, dp1, dml, dmr real(kind=8) :: flc, fmd, fmp, fmn, fmx, ful real(kind=8) :: sigma ! local arrays for derivatives ! real(kind=8), dimension(n) :: dfm, dfp real(kind=8), dimension(n) :: u real(kind=8), dimension(n,2) :: a, b, c, r ! !------------------------------------------------------------------------------- ! ! calculate the left and right derivatives ! do i = 1, n - 1 ip1 = i + 1 dfp(i ) = f(ip1) - f(i) dfm(ip1) = dfp(i) end do dfm(1) = dfp(1) dfp(n) = dfm(n) ! prepare the tridiagonal system coefficients for the interior ! do i = ng, n - ng + 1 im1 = i - 1 ip1 = i + 1 a(i,1) = 3.0d-01 b(i,1) = 6.0d-01 c(i,1) = 1.0d-01 a(i,2) = 1.0d-01 b(i,2) = 6.0d-01 c(i,2) = 3.0d-01 r(i,1) = (f(im1) + 1.9d+01 * f(i ) + 1.0d+01 * f(ip1)) / 3.0d+01 r(i,2) = (f(ip1) + 1.9d+01 * f(i ) + 1.0d+01 * f(im1)) / 3.0d+01 end do ! i = ng, n - ng + 1 ! interpolate ghost zones using explicit method (left-side reconstruction) ! do i = 2, ng im2 = max(1, i - 2) im1 = i - 1 ip1 = i + 1 ip2 = i + 2 a(i,1) = 0.0d+00 b(i,1) = 1.0d+00 c(i,1) = 0.0d+00 r(i,1) = (4.7d+01 * f(i ) + (2.7d+01 * f(ip1) - 1.3d+01 * f(im1)) & - (3.0d+00 * f(ip2) - 2.0d+00 * f(im2))) & / 6.0d+01 end do ! i = 2, ng a(1,1) = 0.0d+00 b(1,1) = 1.0d+00 c(1,1) = 0.0d+00 r(1,1) = 0.5d+00 * (f(1) + f(2)) do i = n - ng, n - 1 im2 = i - 2 im1 = i - 1 ip1 = i + 1 ip2 = min(n, i + 2) a(i,1) = 0.0d+00 b(i,1) = 1.0d+00 c(i,1) = 0.0d+00 r(i,1) = (4.7d+01 * f(i ) + (2.7d+01 * f(ip1) - 1.3d+01 * f(im1)) & - (3.0d+00 * f(ip2) - 2.0d+00 * f(im2))) & / 6.0d+01 end do ! i = n - ng, n - 1 a(n,1) = 0.0d+00 b(n,1) = 1.0d+00 c(n,1) = 0.0d+00 r(n,1) = f(n) ! interpolate ghost zones using explicit method (right-side reconstruction) ! do i = 2, ng + 1 im2 = max(1, i - 2) im1 = i - 1 ip1 = i + 1 ip2 = i + 2 a(i,2) = 0.0d+00 b(i,2) = 1.0d+00 c(i,2) = 0.0d+00 r(i,2) = (4.7d+01 * f(i ) + (2.7d+01 * f(im1) - 1.3d+01 * f(ip1)) & - (3.0d+00 * f(im2) - 2.0d+00 * f(ip2))) & / 6.0d+01 end do ! i = 2, ng + 1 a(1,2) = 0.0d+00 b(1,2) = 1.0d+00 c(1,2) = 0.0d+00 r(1,2) = f(1) do i = n - ng + 1, n - 1 im2 = i - 2 im1 = i - 1 ip1 = i + 1 ip2 = min(n, i + 2) a(i,2) = 0.0d+00 b(i,2) = 1.0d+00 c(i,2) = 0.0d+00 r(i,2) = (4.7d+01 * f(i ) + (2.7d+01 * f(im1) - 1.3d+01 * f(ip1)) & - (3.0d+00 * f(im2) - 2.0d+00 * f(ip2))) & / 6.0d+01 end do ! i = n - ng + 1, n - 1 a(n,2) = 0.0d+00 b(n,2) = 1.0d+00 c(n,2) = 0.0d+00 r(n,2) = 0.5d+00 * (f(n-1) + f(n)) ! solve the tridiagonal system of equations for the left-side interpolation ! call tridiag(n, a(1:n,1), b(1:n,1), c(1:n,1), r(1:n,1), u(1:n)) ! apply the monotonicity preserving limiting ! do i = 2, n - 1 im1 = i - 1 ip1 = i + 1 if (dfm(i) * dfp(i) >= 0.0d+00) then sigma = kappa else sigma = kbeta end if df = sigma * dfm(i) fmp = f(i) + minmod(dfp(i), df) ds = (u(i) - f(i)) * (u(i) - fmp) if (ds <= eps) then fl(i) = u(i) else dm1 = dfp(im1) - dfm(im1) dc0 = dfp(i ) - dfm(i ) dp1 = dfp(ip1) - dfm(ip1) dc4 = 4.0d+00 * dc0 dml = 0.5d+00 * minmod4(dc4 - dm1, 4.0d+00 * dm1 - dc0, dc0, dm1) dmr = 0.5d+00 * minmod4(dc4 - dp1, 4.0d+00 * dp1 - dc0, dc0, dp1) fmd = f(i) + 0.5d+00 * dfp(i) - dmr ful = f(i) + df flc = f(i) + 0.5d+00 * df + dml fmx = max(min(f(i), f(ip1), fmd), min(f(i), ful, flc)) fmn = min(max(f(i), f(ip1), fmd), max(f(i), ful, flc)) fl(i) = median(u(i), fmn, fmx) end if end do ! i = 2, n - 1 ! solve the tridiagonal system of equations for the right-side interpolation ! call tridiag(n, a(1:n,2), b(1:n,2), c(1:n,2), r(1:n,2), u(1:n)) ! apply the monotonicity preserving limiting ! do i = 2, n - 1 im1 = i - 1 ip1 = i + 1 if (dfm(i) * dfp(i) >= 0.0d+00) then sigma = kappa else sigma = kbeta end if df = sigma * dfp(i) fmp = f(i) - minmod(dfm(i), df) ds = (u(i) - f(i)) * (u(i) - fmp) if (ds <= eps) then fr(i) = u(i) else dm1 = dfp(im1) - dfm(im1) dc0 = dfp(i ) - dfm(i ) dp1 = dfp(ip1) - dfm(ip1) dc4 = 4.0d+00 * dc0 dml = 0.5d+00 * minmod4(dc4 - dm1, 4.0d+00 * dm1 - dc0, dc0, dm1) dmr = 0.5d+00 * minmod4(dc4 - dp1, 4.0d+00 * dp1 - dc0, dc0, dp1) fmd = f(i) - 0.5d+00 * dfm(i) - dml ful = f(i) - df flc = f(i) - 0.5d+00 * df + dmr fmx = max(min(f(i), f(im1), fmd), min(f(i), ful, flc)) fmn = min(max(f(i), f(im1), fmd), max(f(i), ful, flc)) fr(i) = median(u(i), fmn, fmx) end if ! shift the right state ! fr(im1) = fr(i) end do ! i = 2, n - 1 ! update the interpolation of the first and last points ! i = n - 1 fl(1) = 0.5d+00 * (f(1) + f(2)) fr(i) = 0.5d+00 * (f(i) + f(n)) fl(n) = f(n) fr(n) = f(n) !------------------------------------------------------------------------------- ! end subroutine reconstruct_crmp5 ! !=============================================================================== ! ! subroutine RECONSTRUCT_CRMP5LD: ! ------------------------------ ! ! Subroutine reconstructs the interface states using the fifth order ! Low-Dissipation Compact Reconstruction Monotonicity Preserving (CRMP) ! method. ! ! Arguments are described in subroutine reconstruct(). ! ! References: ! ! [1] Suresh, A. & Huynh, H. T., ! "Accurate Monotonicity-Preserving Schemes with Runge-Kutta ! Time Stepping" ! Journal on Computational Physics, ! 1997, vol. 136, pp. 83-99, ! http://dx.doi.org/10.1006/jcph.1997.5745 ! [2] He, ZhiWei, Li, XinLiang, Fu, DeXun, & Ma, YanWen, ! "A 5th order monotonicity-preserving upwind compact difference ! scheme", ! Science China Physics, Mechanics and Astronomy, ! Volume 54, Issue 3, pp. 511-522, ! http://dx.doi.org/10.1007/s11433-010-4220-x ! [3] Ghosh, D. & Baeder, J., ! "Compact Reconstruction Schemes With Weighted ENO Limiting For ! Hyperbolic Conservation Laws", ! SIAM Journal on Scientific Computing, ! 2012, vol. 34, no. 3, pp. A1678-A1705, ! http://dx.doi.org/10.1137/110857659 ! !=============================================================================== ! subroutine reconstruct_crmp5ld(n, h, f, fl, fr) ! include external procedures ! use algebra , only : tridiag ! local variables are not implicit by default ! implicit none ! subroutine arguments ! integer , intent(in) :: n real(kind=8) , intent(in) :: h real(kind=8), dimension(n), intent(in) :: f real(kind=8), dimension(n), intent(out) :: fl, fr ! local variables ! integer :: i, im1, ip1, im2, ip2 real(kind=8) :: df, ds, dc0, dc4, dm1, dp1, dml, dmr real(kind=8) :: flc, fmd, fmp, fmn, fmx, ful real(kind=8) :: sigma ! local arrays for derivatives ! real(kind=8), dimension(n) :: dfm, dfp real(kind=8), dimension(n) :: u real(kind=8), dimension(n,2) :: a, b, c, r ! !------------------------------------------------------------------------------- ! ! calculate the left and right derivatives ! do i = 1, n - 1 ip1 = i + 1 dfp(i ) = f(ip1) - f(i) dfm(ip1) = dfp(i) end do dfm(1) = dfp(1) dfp(n) = dfm(n) ! prepare the tridiagonal system coefficients for the interior (eq. 3.6 in [3]) ! do i = ng, n - ng + 1 im2 = i - 2 im1 = i - 1 ip1 = i + 1 ip2 = i + 2 a(i,1) = 2.5d-01 b(i,1) = 6.0d-01 c(i,1) = 1.5d-01 a(i,2) = 1.5d-01 b(i,2) = 6.0d-01 c(i,2) = 2.5d-01 r(i,1) = (3.0d+00 * f(im1) + 6.7d+01 * f(i ) & + 4.9d+01 * f(ip1) + f(ip2)) / 1.2d+02 r(i,2) = (3.0d+00 * f(ip1) + 6.7d+01 * f(i ) & + 4.9d+01 * f(im1) + f(im2)) / 1.2d+02 end do ! i = ng, n - ng + 1 ! interpolate ghost zones using explicit method (left-side reconstruction) ! do i = 2, ng im2 = max(1, i - 2) im1 = i - 1 ip1 = i + 1 ip2 = i + 2 a(i,1) = 0.0d+00 b(i,1) = 1.0d+00 c(i,1) = 0.0d+00 r(i,1) = (4.7d+01 * f(i ) + (2.7d+01 * f(ip1) - 1.3d+01 * f(im1)) & - (3.0d+00 * f(ip2) - 2.0d+00 * f(im2))) & / 6.0d+01 end do ! i = 2, ng a(1,1) = 0.0d+00 b(1,1) = 1.0d+00 c(1,1) = 0.0d+00 r(1,1) = 0.5d+00 * (f(1) + f(2)) do i = n - ng, n - 1 im2 = i - 2 im1 = i - 1 ip1 = i + 1 ip2 = min(n, i + 2) a(i,1) = 0.0d+00 b(i,1) = 1.0d+00 c(i,1) = 0.0d+00 r(i,1) = (4.7d+01 * f(i ) + (2.7d+01 * f(ip1) - 1.3d+01 * f(im1)) & - (3.0d+00 * f(ip2) - 2.0d+00 * f(im2))) & / 6.0d+01 end do ! i = n - ng, n - 1 a(n,1) = 0.0d+00 b(n,1) = 1.0d+00 c(n,1) = 0.0d+00 r(n,1) = f(n) ! interpolate ghost zones using explicit method (right-side reconstruction) ! do i = 2, ng + 1 im2 = max(1, i - 2) im1 = i - 1 ip1 = i + 1 ip2 = i + 2 a(i,2) = 0.0d+00 b(i,2) = 1.0d+00 c(i,2) = 0.0d+00 r(i,2) = (4.7d+01 * f(i ) + (2.7d+01 * f(im1) - 1.3d+01 * f(ip1)) & - (3.0d+00 * f(im2) - 2.0d+00 * f(ip2))) & / 6.0d+01 end do ! i = 2, ng + 1 a(1,2) = 0.0d+00 b(1,2) = 1.0d+00 c(1,2) = 0.0d+00 r(1,2) = f(1) do i = n - ng + 1, n - 1 im2 = i - 2 im1 = i - 1 ip1 = i + 1 ip2 = min(n, i + 2) a(i,2) = 0.0d+00 b(i,2) = 1.0d+00 c(i,2) = 0.0d+00 r(i,2) = (4.7d+01 * f(i ) + (2.7d+01 * f(im1) - 1.3d+01 * f(ip1)) & - (3.0d+00 * f(im2) - 2.0d+00 * f(ip2))) & / 6.0d+01 end do ! i = n - ng + 1, n - 1 a(n,2) = 0.0d+00 b(n,2) = 1.0d+00 c(n,2) = 0.0d+00 r(n,2) = 0.5d+00 * (f(n-1) + f(n)) ! solve the tridiagonal system of equations for the left-side interpolation ! call tridiag(n, a(1:n,1), b(1:n,1), c(1:n,1), r(1:n,1), u(1:n)) ! apply the monotonicity preserving limiting ! do i = 2, n - 1 im1 = i - 1 ip1 = i + 1 if (dfm(i) * dfp(i) >= 0.0d+00) then sigma = kappa else sigma = kbeta end if df = sigma * dfm(i) fmp = f(i) + minmod(dfp(i), df) ds = (u(i) - f(i)) * (u(i) - fmp) if (ds <= eps) then fl(i) = u(i) else dm1 = dfp(im1) - dfm(im1) dc0 = dfp(i ) - dfm(i ) dp1 = dfp(ip1) - dfm(ip1) dc4 = 4.0d+00 * dc0 dml = 0.5d+00 * minmod4(dc4 - dm1, 4.0d+00 * dm1 - dc0, dc0, dm1) dmr = 0.5d+00 * minmod4(dc4 - dp1, 4.0d+00 * dp1 - dc0, dc0, dp1) fmd = f(i) + 0.5d+00 * dfp(i) - dmr ful = f(i) + df flc = f(i) + 0.5d+00 * df + dml fmx = max(min(f(i), f(ip1), fmd), min(f(i), ful, flc)) fmn = min(max(f(i), f(ip1), fmd), max(f(i), ful, flc)) fl(i) = median(u(i), fmn, fmx) end if end do ! i = 2, n - 1 ! solve the tridiagonal system of equations for the right-side interpolation ! call tridiag(n, a(1:n,2), b(1:n,2), c(1:n,2), r(1:n,2), u(1:n)) ! apply the monotonicity preserving limiting ! do i = 2, n - 1 im1 = i - 1 ip1 = i + 1 if (dfm(i) * dfp(i) >= 0.0d+00) then sigma = kappa else sigma = kbeta end if df = sigma * dfp(i) fmp = f(i) - minmod(dfm(i), df) ds = (u(i) - f(i)) * (u(i) - fmp) if (ds <= eps) then fr(i) = u(i) else dm1 = dfp(im1) - dfm(im1) dc0 = dfp(i ) - dfm(i ) dp1 = dfp(ip1) - dfm(ip1) dc4 = 4.0d+00 * dc0 dml = 0.5d+00 * minmod4(dc4 - dm1, 4.0d+00 * dm1 - dc0, dc0, dm1) dmr = 0.5d+00 * minmod4(dc4 - dp1, 4.0d+00 * dp1 - dc0, dc0, dp1) fmd = f(i) - 0.5d+00 * dfm(i) - dml ful = f(i) - df flc = f(i) - 0.5d+00 * df + dmr fmx = max(min(f(i), f(im1), fmd), min(f(i), ful, flc)) fmn = min(max(f(i), f(im1), fmd), max(f(i), ful, flc)) fr(i) = median(u(i), fmn, fmx) end if ! shift the right state ! fr(im1) = fr(i) end do ! i = 2, n - 1 ! update the interpolation of the first and last points ! i = n - 1 fl(1) = 0.5d+00 * (f(1) + f(2)) fr(i) = 0.5d+00 * (f(i) + f(n)) fl(n) = f(n) fr(n) = f(n) !------------------------------------------------------------------------------- ! end subroutine reconstruct_crmp5ld ! !=============================================================================== ! ! subroutine PREPARE_GP: ! --------------------- ! ! Subroutine prepares matrixes for the Gaussian Process (GP) method. ! !=============================================================================== ! subroutine prepare_gp() ! include external procedures ! use algebra , only : invert use constants , only : pi use error , only : print_error ! local variables are not implicit by default ! implicit none ! local variables ! logical :: flag integer :: i, j real(kind=16) :: sig, z, fc ! local arrays for derivatives ! real(kind=16), dimension(:,:), allocatable :: cov, mgp real(kind=16), dimension(:) , allocatable :: xgp ! !------------------------------------------------------------------------------- ! ! calculate normal distribution sigma ! sig = sqrt(2.0d+00) * sgp ! allocate the convariance matrix and interpolation position vector ! allocate(cov(ngp,ngp)) allocate(mgp(ngp,ngp)) allocate(xgp(ngp)) ! prepare the covariance matrix ! fc = 0.5d+00 * sqrt(pi) * sig do i = 1, ngp do j = 1, ngp z = (1.0d+00 * (i - j) + 0.5d+00) / sig cov(i,j) = erf(z) z = (1.0d+00 * (i - j) - 0.5d+00) / sig cov(i,j) = fc * (cov(i,j) - erf(z)) end do end do ! invert the matrix ! call invert(ngp, cov(1:ngp,1:ngp), mgp(1:ngp,1:ngp), flag) ! prepare the interpolation position vector ! do i = 1, ngp z = (0.5d+00 * (2 * i - 2 - ngp)) / sig xgp(i) = exp(- z**2) end do ! prepare the interpolation coefficients vector ! cgp(1:ngp) = matmul(xgp(1:ngp), mgp(1:ngp,1:ngp)) ! deallocate the convariance matrix and interpolation position vector ! deallocate(cov) deallocate(mgp) deallocate(xgp) ! check if the matrix was inverted successfully ! if (.not. flag) then call print_error("interpolations::prepare_gp" & , "Could not invert covariance matrix!") stop end if !------------------------------------------------------------------------------- ! end subroutine prepare_gp ! !=============================================================================== ! ! subroutine RECONSTRUCT_GP: ! ------------------------- ! ! Subroutine reconstructs the interface states using the fifth order ! Gaussian Process (GP) method. ! ! Arguments are described in subroutine reconstruct(). ! !=============================================================================== ! subroutine reconstruct_gp(n, h, f, fl, fr) ! local variables are not implicit by default ! implicit none ! subroutine arguments ! integer , intent(in) :: n real(kind=8) , intent(in) :: h real(kind=8), dimension(n), intent(in) :: f real(kind=8), dimension(n), intent(out) :: fl, fr ! local variables ! integer :: i, im1, ip1, im2, ip2, j, m real(kind=8) :: df, ds, dc0, dc4, dm1, dp1, dml, dmr real(kind=8) :: flc, fmd, fmp, fmn, fmx, ful real(kind=8) :: sigma ! local arrays for derivatives ! real(kind=8), dimension(n) :: dfm, dfp ! !------------------------------------------------------------------------------- ! ! calculate the left and right derivatives ! do i = 1, n - 1 ip1 = i + 1 dfp(i ) = f(ip1) - f(i) dfm(ip1) = dfp(i) end do dfm(1) = dfp(1) dfp(n) = dfm(n) ! obtain the face values using high order interpolation ! m = (ngp - 1) / 2 do i = 2, m im2 = max(1, i - 2) im1 = i - 1 ip1 = i + 1 ip2 = min(n, i + 2) fl(i) = (4.7d+01 * f(i ) + (2.7d+01 * f(ip1) - 1.3d+01 * f(im1)) & - (3.0d+00 * f(ip2) - 2.0d+00 * f(im2))) & / 6.0d+01 fr(i) = (4.7d+01 * f(i ) + (2.7d+01 * f(im1) - 1.3d+01 * f(ip1)) & - (3.0d+00 * f(im2) - 2.0d+00 * f(ip2))) & / 6.0d+01 end do ! i = 2, m do i = n - m + 1, n - 1 im2 = max(1, i - 2) im1 = i - 1 ip1 = i + 1 ip2 = min(n, i + 2) fl(i) = (4.7d+01 * f(i ) + (2.7d+01 * f(ip1) - 1.3d+01 * f(im1)) & - (3.0d+00 * f(ip2) - 2.0d+00 * f(im2))) & / 6.0d+01 fr(i) = (4.7d+01 * f(i ) + (2.7d+01 * f(im1) - 1.3d+01 * f(ip1)) & - (3.0d+00 * f(im2) - 2.0d+00 * f(ip2))) & / 6.0d+01 end do ! i = n - m + 1, n - 1 do i = 1 + m, n - m im2 = i - m ip2 = i + m fl(i) = sum(cgp(1:ngp) * f(im2:ip2 )) fr(i) = sum(cgp(1:ngp) * f(ip2:im2:-1)) end do ! i = 1 + m, n - m ! apply monotonicity preserving limiting ! do i = 2, n - 1 im1 = i - 1 ip1 = i + 1 if (dfm(i) * dfp(i) >= 0.0d+00) then sigma = kappa else sigma = kbeta end if ! get the limiting condition for the left state ! df = sigma * dfm(i) fmp = f(i) + minmod(dfp(i), df) ds = (fl(i) - f(i)) * (fl(i) - fmp) ! limit the left state ! if (ds > eps) then dm1 = dfp(im1) - dfm(im1) dc0 = dfp(i ) - dfm(i ) dp1 = dfp(ip1) - dfm(ip1) dc4 = 4.0d+00 * dc0 dml = 0.5d+00 * minmod4(dc4 - dm1, 4.0d+00 * dm1 - dc0, dc0, dm1) dmr = 0.5d+00 * minmod4(dc4 - dp1, 4.0d+00 * dp1 - dc0, dc0, dp1) fmd = f(i) + 0.5d+00 * dfp(i) - dmr ful = f(i) + df flc = f(i) + 0.5d+00 * df + dml fmx = max(min(f(i), f(ip1), fmd), min(f(i), ful, flc)) fmn = min(max(f(i), f(ip1), fmd), max(f(i), ful, flc)) fl(i) = median(fl(i), fmn, fmx) end if ! get the limiting condition for the right state ! df = sigma * dfp(i) fmp = f(i) - minmod(dfm(i), df) ds = (fr(i) - f(i)) * (fr(i) - fmp) ! limit the right state ! if (ds > eps) then dm1 = dfp(im1) - dfm(im1) dc0 = dfp(i ) - dfm(i ) dp1 = dfp(ip1) - dfm(ip1) dc4 = 4.0d+00 * dc0 dml = 0.5d+00 * minmod4(dc4 - dm1, 4.0d+00 * dm1 - dc0, dc0, dm1) dmr = 0.5d+00 * minmod4(dc4 - dp1, 4.0d+00 * dp1 - dc0, dc0, dp1) fmd = f(i) - 0.5d+00 * dfm(i) - dml ful = f(i) - df flc = f(i) - 0.5d+00 * df + dmr fmx = max(min(f(i), f(im1), fmd), min(f(i), ful, flc)) fmn = min(max(f(i), f(im1), fmd), max(f(i), ful, flc)) fr(i) = median(fr(i), fmn, fmx) end if ! shift the right state ! fr(im1) = fr(i) end do ! n = 2, n - 1 ! update the interpolation of the first and last points ! i = n - 1 fl(1) = 0.5d+00 * (f(1) + f(2)) fr(i) = 0.5d+00 * (f(i) + f(n)) fl(n) = f(n) fr(n) = f(n) !------------------------------------------------------------------------------- ! end subroutine reconstruct_gp ! !=============================================================================== ! ! function LIMITER_ZERO: ! --------------------- ! ! Function returns zero. ! ! Arguments: ! ! x - scaling factor; ! a, b - the input values; ! !=============================================================================== ! function limiter_zero(x, a, b) result(c) ! local variables are not implicit by default ! implicit none ! input arguments ! real(kind=8), intent(in) :: x, a, b real(kind=8) :: c ! !------------------------------------------------------------------------------- ! c = 0.0d+00 !------------------------------------------------------------------------------- ! end function limiter_zero ! !=============================================================================== ! ! function LIMITER_MINMOD: ! ----------------------- ! ! Function returns the minimum module value among two arguments using ! minmod limiter. ! ! Arguments: ! ! x - scaling factor; ! a, b - the input values; ! !=============================================================================== ! function limiter_minmod(x, a, b) result(c) ! local variables are not implicit by default ! implicit none ! input arguments ! real(kind=8), intent(in) :: x, a, b real(kind=8) :: c ! !------------------------------------------------------------------------------- ! c = 0.5d+00 * (sign(x, a) + sign(x, b)) * min(abs(a), abs(b)) !------------------------------------------------------------------------------- ! end function limiter_minmod ! !=============================================================================== ! ! function LIMITER_MONOTONIZED_CENTRAL: ! ------------------------------------ ! ! Function returns the minimum module value among two arguments using ! the monotonized central TVD limiter. ! ! Arguments: ! ! x - scaling factor; ! a, b - the input values; ! !=============================================================================== ! function limiter_monotonized_central(x, a, b) result(c) ! local variables are not implicit by default ! implicit none ! input arguments ! real(kind=8), intent(in) :: x, a, b real(kind=8) :: c ! !------------------------------------------------------------------------------- ! c = (sign(x, a) + sign(x, b)) * min(abs(a), abs(b), 2.5d-01 * abs(a + b)) !------------------------------------------------------------------------------- ! end function limiter_monotonized_central ! !=============================================================================== ! ! function LIMITER_SUPERBEE: ! ------------------------- ! ! Function returns the minimum module value among two arguments using ! superbee limiter. ! ! Arguments: ! ! x - scaling factor; ! a, b - the input values; ! !=============================================================================== ! function limiter_superbee(x, a, b) result(c) ! local variables are not implicit by default ! implicit none ! input arguments ! real(kind=8), intent(in) :: x, a, b real(kind=8) :: c ! !------------------------------------------------------------------------------- ! c = 0.5d+00 * (sign(x, a) + sign(x, b)) & * max(min(2.0d+00 * abs(a), abs(b)), min(abs(a), 2.0d+00 * abs(b))) !------------------------------------------------------------------------------- ! end function limiter_superbee ! !=============================================================================== ! ! function LIMITER_VANLEER: ! ------------------------ ! ! Function returns the minimum module value among two arguments using ! van Leer's limiter. ! ! Arguments: ! ! x - scaling factor; ! a, b - the input values; ! !=============================================================================== ! function limiter_vanleer(x, a, b) result(c) ! local variables are not implicit by default ! implicit none ! input arguments ! real(kind=8), intent(in) :: x, a, b real(kind=8) :: c ! !------------------------------------------------------------------------------- ! c = a * b if (c > 0.0d+00) then c = 2.0d+00 * x * c / (a + b) else c = 0.0d+00 end if !------------------------------------------------------------------------------- ! end function limiter_vanleer ! !=============================================================================== ! ! function LIMITER_VANALBADA: ! -------------------------- ! ! Function returns the minimum module value among two arguments using ! van Albada's limiter. ! ! Arguments: ! ! x - scaling factor; ! a, b - the input values; ! !=============================================================================== ! function limiter_vanalbada(x, a, b) result(c) ! local variables are not implicit by default ! implicit none ! input arguments ! real(kind=8), intent(in) :: x, a, b real(kind=8) :: c ! !------------------------------------------------------------------------------- ! c = x * a * b * (a + b) / max(eps, a * a + b * b) !------------------------------------------------------------------------------- ! end function limiter_vanalbada ! !=============================================================================== ! ! function MINMOD: ! =============== ! ! Function returns the minimum module value among two arguments. ! ! Arguments: ! ! a, b - the input values; ! !=============================================================================== ! real(kind=8) function minmod(a, b) ! local variables are not implicit by default ! implicit none ! input arguments ! real(kind=8), intent(in) :: a, b ! !------------------------------------------------------------------------------- ! minmod = (sign(0.5d+00, a) + sign(0.5d+00, b)) * min(abs(a), abs(b)) return !------------------------------------------------------------------------------- ! end function minmod ! !=============================================================================== ! ! function MINMOD4: ! ================ ! ! Function returns the minimum module value among four arguments. ! ! Arguments: ! ! a, b, c, d - the input values; ! !=============================================================================== ! real(kind=8) function minmod4(a, b, c, d) ! local variables are not implicit by default ! implicit none ! input arguments ! real(kind=8), intent(in) :: a, b, c, d ! !------------------------------------------------------------------------------- ! minmod4 = minmod(minmod(a, b), minmod(c, d)) return !------------------------------------------------------------------------------- ! end function minmod4 ! !=============================================================================== ! ! function MEDIAN: ! =============== ! ! Function returns the median of three argument values. ! ! Arguments: ! ! a, b, c - the input values; ! !=============================================================================== ! real(kind=8) function median(a, b, c) ! local variables are not implicit by default ! implicit none ! input arguments ! real(kind=8), intent(in) :: a, b, c ! !------------------------------------------------------------------------------- ! median = a + minmod(b - a, c - a) return end function median ! !=============================================================================== ! ! subroutine FIX_POSITIVITY: ! ------------------------- ! ! Subroutine scans the input arrays of the left and right states fl(:) and ! fr(:) for negative values. If it finds a negative value, it repeates the ! state reconstruction from f(:) using the zeroth order interpolation. ! !=============================================================================== ! subroutine fix_positivity(n, f, fl, fr) ! local variables are not implicit by default ! implicit none ! input/output arguments ! integer , intent(in) :: n real(kind=8), dimension(n), intent(in) :: f real(kind=8), dimension(n), intent(inout) :: fl, fr ! local variables ! integer :: i, im1, ip1 real(kind=8) :: fmn, fmx ! !------------------------------------------------------------------------------ ! #ifdef PROFILE ! start accounting time for positivity fix ! call start_timer(imf) #endif /* PROFILE */ ! check positivity only if desired ! if (positivity) then ! look for negative values in the states along the vector ! do i = 1, n ! check if the left state has a negative value ! if (fl(i) <= 0.0d+00) then ! calculate the left neighbour index ! im1 = max(1, i - 1) ! limit the states using the zeroth-order reconstruction ! fl(i ) = f(i) fr(im1) = f(i) end if ! fl ≤ 0 ! check if the right state has a negative value ! if (fr(i) <= 0.0d+00) then ! calculate the right neighbour index ! ip1 = min(n, i + 1) ! limit the states using the zeroth-order reconstruction ! fl(ip1) = f(ip1) fr(i ) = f(ip1) end if ! fr ≤ 0 end do ! i = 1, n end if ! positivity == .true. #ifdef PROFILE ! stop accounting time for positivity fix ! call stop_timer(imf) #endif /* PROFILE */ !------------------------------------------------------------------------------- ! end subroutine fix_positivity ! !=============================================================================== ! ! subroutine CLIP_EXTREMA: ! ----------------------- ! ! Subroutine scans the reconstructed states and check if they didn't leave ! the allowed limits. In the case where the limits where exceeded, ! the states are limited using constant reconstruction. ! ! Arguments: ! ! n - the length of input vectors; ! f - the cell centered integrals of variable; ! fl, fr - the left and right states of variable; ! !=============================================================================== ! subroutine clip_extrema(n, f, fl, fr) ! local variables are not implicit by default ! implicit none ! subroutine arguments ! integer , intent(in) :: n real(kind=8), dimension(n), intent(in) :: f real(kind=8), dimension(n), intent(inout) :: fl, fr ! local variables ! integer :: i, im1, ip1, ip2 real(kind=8) :: fmn, fmx real(kind=8) :: dfl, dfr, df ! !------------------------------------------------------------------------------ ! #ifdef PROFILE ! start accounting time for extrema clipping ! call start_timer(imc) #endif /* PROFILE */ ! iterate over all points ! do i = 1, n ! calculate indices ! im1 = max(1, i - 1) ip1 = min(n, i + 1) ! estimate the bounds of the allowed interval for reconstructed states ! fmn = min(f(i), f(ip1)) fmx = max(f(i), f(ip1)) ! check if the left state lays in the allowed range ! if (fl(i) < fmn .or. fl(i) > fmx) then ! calculate the left and right derivatives ! dfl = f(i ) - f(im1) dfr = f(ip1) - f(i ) ! get the limited slope ! df = limiter_clip(0.5d+00, dfl, dfr) ! calculate new states ! fl(i ) = f(i ) + df fr(im1) = f(i ) - df end if ! check if the right state lays in the allowed range ! if (fr(i) < fmn .or. fr(i) > fmx) then ! calculate the missing index ! ip2 = min(n, i + 2) ! calculate the left and right derivatives ! dfl = f(ip1) - f(i ) dfr = f(ip2) - f(ip1) ! get the limited slope ! df = limiter_clip(0.5d+00, dfl, dfr) ! calculate new states ! fl(ip1) = f(ip1) + df fr(i ) = f(ip1) - df end if end do ! i = 1, n #ifdef PROFILE ! stop accounting time for extrema clipping ! call stop_timer(imc) #endif /* PROFILE */ !------------------------------------------------------------------------------- ! end subroutine clip_extrema !=============================================================================== ! end module interpolations