amun-code/src/scheme.F90
Grzegorz Kowal 91521184cd INTERPOLATION: pass dx to the reconstruction.
- the spacial increment is required by some interpolation methods, so
   pass it to the subroutine reconstruct();
2010-12-06 16:27:49 -02:00

1584 lines
43 KiB
Fortran

!!******************************************************************************
!!
!! module: scheme - handling the actual solver of the set of equations
!!
!! Copyright (C) 2008-2010 Grzegorz Kowal <grzegorz@gkowal.info>
!!
!!******************************************************************************
!!
!! This file is part of Godunov-AMR.
!!
!! Godunov-AMR is free software; you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by
!! the Free Software Foundation; either version 3 of the License, or
!! (at your option) any later version.
!!
!! Godunov-AMR is distributed in the hope that it will be useful,
!! but WITHOUT ANY WARRANTY; without even the implied warranty of
!! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
!! GNU General Public License for more details.
!!
!! You should have received a copy of the GNU General Public License
!! along with this program. If not, see <http://www.gnu.org/licenses/>.
!!
!!******************************************************************************
!!
!
module scheme
implicit none
! the maximal speed in the system
!
real, save :: cmax
contains
!
!===============================================================================
!
! update: subroutine sweeps over all directions and integrates the directional
! derivatives of the flux in order to get the increment of solution
!
!===============================================================================
!
subroutine update(u, du, dxi, dyi, dzi)
use config , only : im, jm, km
use variables , only : nvr, nqt, nfl
use variables , only : idn, imx, imy, imz
#ifdef ADI
use variables , only : ien
#endif /* ADI */
#ifdef MHD
use variables , only : ibx, iby, ibz
#ifdef GLM
use variables , only : iph
#endif /* GLM */
#endif /* MHD */
implicit none
! input arguments
!
real, dimension(nqt,im,jm,km) , intent(in) :: u
real, dimension(nqt,im,jm,km) , intent(out) :: du
real , intent(in) :: dxi, dyi, dzi
! local variables
!
integer :: i, j, k, im1, jm1, km1, ip1, jp1, kp1
real :: dx, dy, dz
! local temporary arrays
!
real, dimension(nvr,im) :: ux
real, dimension(nqt,im) :: fx
real, dimension(nvr,jm) :: uy
real, dimension(nqt,jm) :: fy
#if NDIMS == 3
real, dimension(nvr,km) :: uz
real, dimension(nqt,km) :: fz
#endif /* NDIMS == 3 */
!
!-------------------------------------------------------------------------------
!
! reset the increment array
!
du(:,:,:,:) = 0.0
! prepare the spacial increment
!
dx = 1.0d0 / dxi
dy = 1.0d0 / dyi
#if NDIMS == 3
dz = 1.0d0 / dzi
#endif /* NDIMS == 3 */
! update along X-direction
!
do k = 1, km
#if NDIMS == 3
#ifdef MHD
km1 = max(k - 1, 1)
kp1 = min(k + 1,km)
#endif /* MHD */
#endif /* NDIMS == 3 */
do j = 1, jm
#ifdef MHD
jm1 = max(j - 1, 1)
jp1 = min(j + 1,jm)
#endif /* MHD */
! copy directional vectors of variables for the one dimensional solver
!
do i = 1, im
ux(idn,i) = u(idn,i,j,k)
ux(imx,i) = u(imx,i,j,k)
ux(imy,i) = u(imy,i,j,k)
ux(imz,i) = u(imz,i,j,k)
#ifdef ADI
ux(ien,i) = u(ien,i,j,k)
#endif /* ADI */
#ifdef MHD
ux(ibx,i) = u(ibx,i,j,k)
ux(iby,i) = u(iby,i,j,k)
ux(ibz,i) = u(ibz,i,j,k)
#ifdef GLM
ux(iph,i) = u(iph,i,j,k)
#endif /* GLM */
#endif /* MHD */
end do
! execute solver (returns fluxes for the update)
!
#ifdef HLL
call hll (im, dx, ux(:,:), fx(:,:))
#endif /* HLL */
#ifdef HLLC
call hllc(im, dx, ux(:,:), fx(:,:))
#endif /* HLLC */
#ifdef HLLD
call hlld(im, dx, ux(:,:), fx(:,:))
#endif /* HLLD */
! update the arrays of increments
!
do i = 1, im
du(idn,i,j,k) = du(idn,i,j,k) + dxi * fx(idn,i)
du(imx,i,j,k) = du(imx,i,j,k) + dxi * fx(imx,i)
du(imy,i,j,k) = du(imy,i,j,k) + dxi * fx(imy,i)
du(imz,i,j,k) = du(imz,i,j,k) + dxi * fx(imz,i)
#ifdef ADI
du(ien,i,j,k) = du(ien,i,j,k) + dxi * fx(ien,i)
#endif /* ADI */
#ifdef MHD
! update magnetic variables
!
#ifdef GLM
du(ibx,i,j,k) = du(ibx,i,j,k) + dxi * fx(ibx,i)
du(iby,i,j,k) = du(iby,i,j,k) + dxi * fx(iby,i)
du(ibz,i,j,k) = du(ibz,i,j,k) + dxi * fx(ibz,i)
du(iph,i,j,k) = du(iph,i,j,k) + dxi * fx(iph,i)
#endif /* GLM */
#endif /* MHD */
end do
end do
end do
! update along Y-direction
!
do k = 1, km
#if NDIMS == 3
#ifdef MHD
km1 = max(k - 1, 1)
kp1 = min(k + 1,km)
#endif /* MHD */
#endif /* NDIMS == 3 */
do i = 1, im
#ifdef MHD
im1 = max(i - 1, 1)
ip1 = min(i + 1,im)
#endif /* MHD */
! copy directional vectors of variables for the one dimensional solver
!
do j = 1, jm
uy(idn,j) = u(idn,i,j,k)
uy(imx,j) = u(imy,i,j,k)
uy(imy,j) = u(imz,i,j,k)
uy(imz,j) = u(imx,i,j,k)
#ifdef ADI
uy(ien,j) = u(ien,i,j,k)
#endif /* ADI */
#ifdef MHD
uy(ibx,j) = u(iby,i,j,k)
uy(iby,j) = u(ibz,i,j,k)
uy(ibz,j) = u(ibx,i,j,k)
#ifdef GLM
uy(iph,j) = u(iph,i,j,k)
#endif /* GLM */
#endif /* MHD */
end do
! execute solver (returns fluxes for the update)
!
#ifdef HLL
call hll (jm, dy, uy(:,:), fy(:,:))
#endif /* HLL */
#ifdef HLLC
call hllc(jm, dy, uy(:,:), fy(:,:))
#endif /* HLLC */
#ifdef HLLD
call hlld(jm, dy, uy(:,:), fy(:,:))
#endif /* HLLD */
! update the arrays of increments
!
do j = 1, jm
du(idn,i,j,k) = du(idn,i,j,k) + dyi * fy(idn,j)
du(imx,i,j,k) = du(imx,i,j,k) + dyi * fy(imz,j)
du(imy,i,j,k) = du(imy,i,j,k) + dyi * fy(imx,j)
du(imz,i,j,k) = du(imz,i,j,k) + dyi * fy(imy,j)
#ifdef ADI
du(ien,i,j,k) = du(ien,i,j,k) + dyi * fy(ien,j)
#endif /* ADI */
#ifdef MHD
! update magnetic variables
!
#ifdef GLM
du(ibx,i,j,k) = du(ibx,i,j,k) + dyi * fy(ibz,j)
du(iby,i,j,k) = du(iby,i,j,k) + dyi * fy(ibx,j)
du(ibz,i,j,k) = du(ibz,i,j,k) + dyi * fy(iby,j)
du(iph,i,j,k) = du(iph,i,j,k) + dyi * fy(iph,j)
#endif /* GLM */
#endif /* MHD */
end do
end do
end do
#if NDIMS == 3
! update along Z-direction
!
do j = 1, jm
#ifdef MHD
jm1 = max(j - 1, 1)
jp1 = min(j + 1,jm)
#endif /* MHD */
do i = 1, im
#ifdef MHD
im1 = max(i - 1, 1)
ip1 = min(i + 1,im)
#endif /* MHD */
! copy directional vectors of variables for the one dimensional solver
!
do k = 1, km
uz(idn,k) = u(idn,i,j,k)
uz(imx,k) = u(imz,i,j,k)
uz(imy,k) = u(imx,i,j,k)
uz(imz,k) = u(imy,i,j,k)
#ifdef ADI
uz(ien,k) = u(ien,i,j,k)
#endif /* ADI */
#ifdef MHD
uz(ibx,k) = u(ibz,i,j,k)
uz(iby,k) = u(ibx,i,j,k)
uz(ibz,k) = u(iby,i,j,k)
#ifdef GLM
uz(iph,k) = u(iph,i,j,k)
#endif /* GLM */
#endif /* MHD */
end do
! execute solver (returns fluxes for the update)
!
#ifdef HLL
call hll (km, dz, uz(:,:), fz(:,:))
#endif /* HLL */
#ifdef HLLC
call hllc(km, dz, uz(:,:), fz(:,:))
#endif /* HLLC */
#ifdef HLLD
call hlld(km, dz, uz(:,:), fz(:,:))
#endif /* HLLD */
! update the arrays of increments
!
do k = 1, km
du(idn,i,j,k) = du(idn,i,j,k) + dzi * fz(idn,k)
du(imx,i,j,k) = du(imx,i,j,k) + dzi * fz(imy,k)
du(imy,i,j,k) = du(imy,i,j,k) + dzi * fz(imz,k)
du(imz,i,j,k) = du(imz,i,j,k) + dzi * fz(imx,k)
#ifdef ADI
du(ien,i,j,k) = du(ien,i,j,k) + dzi * fz(ien,k)
#endif /* ADI */
#ifdef MHD
! update magnetic variables
!
#ifdef GLM
du(ibx,i,j,k) = du(ibx,i,j,k) + dzi * fz(iby,k)
du(iby,i,j,k) = du(iby,i,j,k) + dzi * fz(ibz,k)
du(ibz,i,j,k) = du(ibz,i,j,k) + dzi * fz(ibx,k)
du(iph,i,j,k) = du(iph,i,j,k) + dzi * fz(iph,k)
#endif /* GLM */
#endif /* MHD */
end do
end do
end do
#endif /* NDIMS == 3 */
!
!-------------------------------------------------------------------------------
!
end subroutine update
#ifdef HLL
!
!===============================================================================
!
! hll: subroutine computes the approximated flux using the HLL method
!
!===============================================================================
!
subroutine hll(n, h, u, f)
use interpolation, only : reconstruct
use variables , only : nvr, nfl, nqt
use variables , only : ivx, ivz
#ifdef MHD
use variables , only : ibx, iby, ibz
#ifdef GLM
use variables , only : iph
#endif /* GLM */
#endif /* MHD */
implicit none
! input/output arguments
!
integer , intent(in) :: n
real , intent(in) :: h
real, dimension(nvr,n), intent(in) :: u
real, dimension(nqt,n), intent(out) :: f
! local variables
!
integer :: p, i
real, dimension(nvr,n) :: q, ql, qr, ul, ur
real, dimension(nqt,n) :: fl, fr, fn
real, dimension(n) :: cl, cr
real :: al, ar, ap, div
!
!-------------------------------------------------------------------------------
!
! calculate the primitive variables
!
call cons2prim(n, u, q)
! reconstruct the left and right states of the primitive variables
!
do p = 1, nfl
call reconstruct(n, h, q(p,:), ql(p,:), qr(p,:))
end do
#ifdef MHD
! reconstruct the left and right states of the magnetic field components
!
do p = ibx, ibz
call reconstruct(n, h, q(p,:), ql(p,:), qr(p,:))
end do
#ifdef GLM
! reconstruct the left and right states of the scalar potential
!
call reconstruct(n, h, q(iph,:), ql(iph,:), qr(iph,:))
! obtain the state values for Bx and Psi for the GLM-MHD equations
!
cl(:) = 0.5d0 * ((qr(ibx,:) + ql(ibx,:)) - (qr(iph,:) - ql(iph,:)) / cmax)
cr(:) = 0.5d0 * ((qr(iph,:) + ql(iph,:)) - (qr(ibx,:) - ql(ibx,:)) * cmax)
ql(ibx,:) = cl(:)
qr(ibx,:) = cl(:)
ql(iph,:) = cr(:)
qr(iph,:) = cr(:)
#endif /* GLM */
#endif /* MHD */
! calculate conservative variables at states
!
call prim2cons(n, ql, ul)
call prim2cons(n, qr, ur)
! calculate fluxes and speeds
!
call fluxspeed(n, ql, ul, fl, cl)
call fluxspeed(n, qr, ur, fr, cr)
! iterate over all points
!
do i = 1, n
! calculate min and max and intermediate speeds: eq. (67)
!
al = min(ql(ivx,i) - cl(i), qr(ivx,i) - cr(i))
ar = max(ql(ivx,i) + cl(i), qr(ivx,i) + cr(i))
! calculate HLL flux
!
if (al .ge. 0.0) then
fn(:,i) = fl(:,i)
else if (ar .le. 0.0) then
fn(:,i) = fr(:,i)
else
ap = ar * al
div = 1.0 / (ar - al)
fn(:,i) = div * (ar * fl(:,i) - al * fr(:,i) + ap * (ur(:,i) - ul(:,i)))
end if
end do
! calculate numerical flux
!
f( 1:nfl,2:n) = - fn( 1:nfl,2:n) + fn( 1:nfl,1:n-1)
#ifdef MHD
#ifdef GLM
f(ibx:ibz,2:n) = - fn(ibx:ibz,2:n) + fn(ibx:ibz,1:n-1)
f(iph ,2:n) = - fn(iph ,2:n) + fn(iph ,1:n-1)
#endif /* GLM */
#endif /* MHD */
!-------------------------------------------------------------------------------
!
end subroutine hll
#endif /* HLL */
#ifdef HLLC
!===============================================================================
!
! hllc: subroutine to compute flux approximated by HLLC method (HYDRO only)
! ([1] Batten et al., 1997, JSC, 18, 6, 1553)
! ([2] Miyoshi & Kusano, 2005, JCP, 208, 315)
!
!===============================================================================
!
subroutine hllc(n, h, u, f)
use interpolation, only : reconstruct
use variables , only : nvr, nfl, nqt
use variables , only : idn, imx, imy, imz, ien, ivx, ivy, ivz, ipr
implicit none
! input/output arguments
!
integer , intent(in) :: n
real , intent(in) :: h
real, dimension(nvr,n), intent(in) :: u
real, dimension(nqt,n), intent(out) :: f
! local variables
!
integer :: p, i
real, dimension(nvr,n) :: ql, qr, q, ul, ur
real, dimension(nfl,n) :: fl, fr, fn
real, dimension(n) :: cl, cr, cm
real :: sl, sr, sm, sml, smr, srmv, slmv, srmm, slmm &
, smvl, smvr, div, pt
real, dimension(nvr) :: q1l, q1r, u1l, u1r
!
!-------------------------------------------------------------------------------
!
! obtain the primitive variables
!
call cons2prim(n, u(:,:), q(:,:))
! reconstruct the left and right states of the primitive variables
!
do p = 1, nfl
call reconstruct(n, h, q(p,:), ql(p,:), qr(p,:))
end do
! obtain the conservative variables at both states
!
call prim2cons(n, ql(:,:), ul(:,:))
call prim2cons(n, qr(:,:), ur(:,:))
! calculate the physical fluxes and speeds
!
call fluxspeed(n, ql(:,:), ul(:,:), fl(:,:), cl(:))
call fluxspeed(n, qr(:,:), ur(:,:), fr(:,:), cr(:))
! iterate along the direction
!
do i = 1, n
! calculate the minimum and maxximum speeds
!
sl = min(ql(ivx,i) - cl(i), qr(ivx,i) - cr(i))
sr = max(ql(ivx,i) + cl(i), qr(ivx,i) + cr(i))
! all speeds >= 0, left side flux
!
if (sl .ge. 0.0) then
fn(:,i) = fl(:,i)
! all speeds <= 0, right side flux
!
else if (sr .le. 0.0) then
fn(:,i) = fr(:,i)
! intermediate states
!
else ! sl < 0 & sr > 0
! useful differences
!
slmv = sl - ql(ivx,i)
srmv = sr - qr(ivx,i)
! speed of the contact discontinuity (eq. 34 [1], 14 [2])
!
div = srmv * qr(idn,i) - slmv * ql(idn,i)
sml = (srmv * ur(imx,i) - slmv * ul(imx,i) &
- qr(ipr,i) + ql(ipr,i)) / div
div = slmv * ql(idn,i) - srmv * qr(idn,i)
smr = (slmv * ul(imx,i) - srmv * ur(imx,i) &
- ql(ipr,i) + qr(ipr,i)) / div
sm = 0.5d0 * (sml + smr)
if (sm .eq. 0.0d0) then
! calculate the left intermediate state
!
pt = ql(ipr,i) - ul(imx,i) * slmv
u1l(idn) = ql(idn,i) * slmv / sl
u1l(imx) = 0.0d0
u1l(imy) = u1l(idn) * ql(ivy,i)
u1l(imz) = u1l(idn) * ql(ivz,i)
if (sl .eq. 0.0d0) then
u1l(ien) = ul(ien,i)
else
u1l(ien) = (slmv * ul(ien,i) - ql(ipr,i) * ql(ivx,i)) / sl
end if
! calculate right intermediate state
!
pt = qr(ipr,i) - ur(imx,i) * srmv
u1r(idn) = qr(idn,i) * srmv / sr
u1r(imx) = 0.0d0
u1r(imy) = u1r(idn) * qr(ivy,i)
u1r(imz) = u1r(idn) * qr(ivz,i)
if (sr .eq. 0.0d0) then
u1r(ien) = ur(ien,i)
else
u1r(ien) = (srmv * ur(ien,i) - qr(ipr,i) * qr(ivx,i)) / sr
endif
! calculate intermediate flux
!
fn(:,i) = 0.5d0 * (fl(:,i) + sl * (u1l(:) - ul(:,i)) &
+ fr(:,i) + sr * (u1r(:) - ur(:,i)))
else
! useful differences
!
slmm = sl - sm
srmm = sr - sm
smvl = sm - ql(ivx,i)
smvr = sm - qr(ivx,i)
! intermediate discontinuities
!
if (sm .gt. 0.0d0) then
! pressure of intermediate states (eq. 36 [1], 16 [2])
!
pt = ql(ipr,i) + ql(idn,i) * slmv * smvl
! calculate the left intermediate state
!
u1l(idn) = ql(idn,i) * slmv / slmm
u1l(imx) = u1l(idn) * sm
u1l(imy) = u1l(idn) * ql(ivy,i)
u1l(imz) = u1l(idn) * ql(ivz,i)
if (slmm .eq. 0.0d0) then
u1l(ien) = ul(ien,i)
else
u1l(ien) = (slmv * ul(ien,i) - ql(ipr,i) * ql(ivx,i) &
+ pt * sm) / slmm
end if
! calculate the left intermediate flux
!
fn(:,i) = fl(:,i) + sl * (u1l(:) - ul(:,i))
else if (sm .lt. 0.0) then
! pressure of intermediate states (eq. 36 [1], 16 [2])
!
pt = qr(ipr,i) + qr(idn,i) * srmv * smvr
! calculate the right intermediate state
!
u1r(idn) = qr(idn,i) * srmv / srmm
u1r(imx) = u1r(idn) * sm
u1r(imy) = u1r(idn) * qr(ivy,i)
u1r(imz) = u1r(idn) * qr(ivz,i)
if (srmm .eq. 0.0d0) then
u1r(ien) = ur(ien,i)
else
u1r(ien) = (srmv * ur(ien,i) - qr(ipr,i) * qr(ivx,i) &
+ pt * sm) / srmm
end if
! calculate the right intermediate flux
!
fn(:,i) = fr(:,i) + sr * (u1r(:) - ur(:,i))
end if
end if
end if
end do
! calculate numerical flux
!
f(:,2:n) = - fn(:,2:n) + fn(:,1:n-1)
!-------------------------------------------------------------------------------
!
end subroutine hllc
#endif /* HLLC */
#ifdef MHD
#ifdef HLLD
#ifdef ISO
!
!===============================================================================
!
! hlld: subroutine computes the approximated flux using the HLLD method
! for the isothermal equation of state
!
!===============================================================================
!
subroutine hlld(n, h, u, f)
use interpolation, only : reconstruct
use variables , only : nvr, nfl, nqt
use variables , only : idn, imx, imy, imz, ivx, ivy, ivz
use variables , only : ibx, iby, ibz
#ifdef GLM
use variables , only : iph
#endif /* GLM */
implicit none
! input/output arguments
!
integer , intent(in) :: n
real , intent(in) :: h
real, dimension(nvr,n), intent(in) :: u
real, dimension(nqt,n), intent(out) :: f
! local variables
!
integer :: p, i
real, dimension(nvr,n) :: q, ql, qr, ul, ur
real, dimension(nqt,n) :: fl, fr, fn
real, dimension(n) :: cl, cr
real, dimension(nvr) :: u1l, u1r, u2
real :: sl, sr, srl, srml, sm, sml, smr
real :: dnm, mxm, sqd, div, fac, bxs
!
!-------------------------------------------------------------------------------
!
! calculate the primitive variables
!
call cons2prim(n, u, q)
! reconstruct the left and right states of the primitive variables
!
do p = 1, nfl
call reconstruct(n, h, q(p,:), ql(p,:), qr(p,:))
end do
! reconstruct the left and right states of the magnetic field components
!
do p = ibx, ibz
call reconstruct(n, h, q(p,:), ql(p,:), qr(p,:))
end do
#ifdef GLM
! reconstruct the left and right states of the scalar potential
!
call reconstruct(n, h, q(iph,:), ql(iph,:), qr(iph,:))
! obtain the state values for Bx and Psi for the GLM-MHD equations
!
cl(:) = 0.5d0 * ((qr(ibx,:) + ql(ibx,:)) - (qr(iph,:) - ql(iph,:)) / cmax)
cr(:) = 0.5d0 * ((qr(iph,:) + ql(iph,:)) - (qr(ibx,:) - ql(ibx,:)) * cmax)
ql(ibx,:) = cl(:)
qr(ibx,:) = cl(:)
ql(iph,:) = cr(:)
qr(iph,:) = cr(:)
#endif /* GLM */
! calculate conservative variables at states
!
call prim2cons(n, ql, ul)
call prim2cons(n, qr, ur)
! calculate fluxes and speeds
!
call fluxspeed(n, ql, ul, fl, cl)
call fluxspeed(n, qr, ur, fr, cr)
! iterate over all points and calculate the HLLD flux
!
do i = 1, n
! calculate min and max and intermediate speeds: eq. (67)
!
sl = min(ql(ivx,i) - cl(i), qr(ivx,i) - cr(i))
sr = max(ql(ivx,i) + cl(i), qr(ivx,i) + cr(i))
! all speeds > 0, left side flux
!
if (sl .ge. 0.0) then
fn(:,i) = fl(:,i)
! all speeds < 0, right side flux
!
else if (sr .le. 0.0) then
fn(:,i) = fr(:,i)
! intermediate states
!
else ! sl < 0 & sr > 0
! product and difference of speeds
!
srl = sr * sl
srml = sr - sl
! density of the intermediate state (eq. 20 and 21)
!
dnm = (sr * ur(idn,i) - sl * ul(idn,i) - fr(idn,i) + fl(idn,i)) / srml
mxm = (sr * ur(imx,i) - sl * ul(imx,i) - fr(imx,i) + fl(imx,i)) / srml
sqd = sqrt(dnm)
! fluxes for density and x-momentum are the same for all intermediate states (eq. 22 and 23)
!
fn(idn,i) = (sr * fl(idn,i) - sl * fr(idn,i) &
+ srl * (ur(idn,i) - ul(idn,i))) / srml
fn(imx,i) = (sr * fl(imx,i) - sl * fr(imx,i) &
+ srl * (ur(imx,i) - ul(imx,i))) / srml
#ifdef GLM
! fluxes for parallel magnetic component and the scalar potential is the same
! as well
fn(ibx,i) = (sr * fl(ibx,i) - sl * fr(ibx,i) &
+ srl * (ur(ibx,i) - ul(ibx,i))) / srml
fn(iph,i) = (sr * fl(iph,i) - sl * fr(iph,i) &
+ srl * (ur(iph,i) - ul(iph,i))) / srml
#endif /* GLM */
! the speed of contact discontinuity (from eq. 15 and eq. 17)
!
sm = fn(idn,i) / dnm
! Alfven speeds (eq. 29)
!
sml = sm - abs(ql(ibx,i)) / sqd
smr = sm + abs(qr(ibx,i)) / sqd
! calculate the left intermediate state
!
u1l(idn) = dnm
u1l(imx) = mxm
div = (sl - sml) * (sl - smr)
if (sm .eq. ql(ivx,i) .or. div .eq. 0.0 .or. ql(ibx,i) .eq. 0.0) then
u1l(imy) = dnm * ql(ivy,i)
u1l(imz) = dnm * ql(ivz,i)
u1l(iby) = ql(iby,i)
u1l(ibz) = ql(ibz,i)
else
fac = ql(ibx,i) * (sm - ql(ivx,i)) / div
u1l(imy) = dnm * ql(ivy,i) - ql(iby,i) * fac
u1l(imz) = dnm * ql(ivz,i) - ql(ibz,i) * fac
fac = (ql(idn,i) * (sl - ql(ivx,i))**2 - ql(ibx,i)**2) &
/ (dnm * div)
u1l(iby) = ql(iby,i) * fac
u1l(ibz) = ql(ibz,i) * fac
end if
! calculate the right intermediate state
!
u1r(idn) = dnm
u1r(imx) = mxm
div = (sr - sml) * (sr - smr)
if (sm .eq. qr(ivx,i) .or. div .eq. 0.0 .or. qr(ibx,i) .eq. 0.0) then
u1r(imy) = dnm * qr(ivy,i)
u1r(imz) = dnm * qr(ivz,i)
u1r(iby) = qr(iby,i)
u1r(ibz) = qr(ibz,i)
else
fac = qr(ibx,i) * (sm - qr(ivx,i)) / div
u1r(imy) = dnm * qr(ivy,i) - qr(iby,i) * fac
u1r(imz) = dnm * qr(ivz,i) - qr(ibz,i) * fac
fac = (qr(idn,i) * (sr - qr(ivx,i))**2 - qr(ibx,i)**2) &
/ (dnm * div)
u1r(iby) = qr(iby,i) * fac
u1r(ibz) = qr(ibz,i) * fac
end if
! intermediate discontinuities
!
if (sml .ge. 0.0) then
! calculate the left intermediate flux
!
fn(imy,i) = fl(imy,i) + sl * (u1l(imy) - ul(imy,i)) ! eq. (38)
fn(imz,i) = fl(imz,i) + sl * (u1l(imz) - ul(imz,i))
fn(iby,i) = fl(iby,i) + sl * (u1l(iby) - ul(iby,i))
fn(ibz,i) = fl(ibz,i) + sl * (u1l(ibz) - ul(ibz,i))
else if (smr .le. 0.0) then
! calculate right intermediate flux
!
fn(imy,i) = fr(imy,i) + sr * (u1r(imy) - ur(imy,i)) ! eq. (38)
fn(imz,i) = fr(imz,i) + sr * (u1r(imz) - ur(imz,i))
fn(iby,i) = fr(iby,i) + sr * (u1r(iby) - ur(iby,i))
fn(ibz,i) = fr(ibz,i) + sr * (u1r(ibz) - ur(ibz,i))
else ! sml < 0 & smr > 0
! normal component of magnetic field multiplied by sqrt(dnm)
!
if (ql(ibx,i) .ge. 0.0) then
bxs = sqd
else
bxs = - sqd
end if
! calculate the intermediate state (eq. 34-37)
!
u2(imy) = 0.5d0 * (u1r(imy) + u1l(imy) + bxs * (u1r(iby) - u1l(iby)))
u2(imz) = 0.5d0 * (u1r(imz) + u1l(imz) + bxs * (u1r(ibz) - u1l(ibz)))
u2(iby) = 0.5d0 * (u1r(iby) + u1l(iby) + (u1r(imy) - u1l(imy)) / bxs)
u2(ibz) = 0.5d0 * (u1r(ibz) + u1l(ibz) + (u1r(imz) - u1l(imz)) / bxs)
! calculate the intermediate flux (eq. 24)
!
fn(imy,i) = sm * u2(imy) - ql(ibx,i) * u2(iby)
fn(imz,i) = sm * u2(imz) - ql(ibx,i) * u2(ibz)
fn(iby,i) = sm * u2(iby) - ql(ibx,i) * u2(imy) / dnm
fn(ibz,i) = sm * u2(ibz) - ql(ibx,i) * u2(imz) / dnm
end if
end if
end do
! calculate numerical flux
!
f( 1:nfl,2:n) = - fn( 1:nfl,2:n) + fn( 1:nfl,1:n-1)
f(ibx:ibz,2:n) = - fn(ibx:ibz,2:n) + fn(ibx:ibz,1:n-1)
#ifdef GLM
f(iph ,2:n) = - fn(iph ,2:n) + fn(iph ,1:n-1)
#endif /* GLM */
!-------------------------------------------------------------------------------
!
end subroutine hlld
#endif /* ISO */
#ifdef ADI
!
!===============================================================================
!
! hlld: subroutine computes the approximated flux using the HLLD method
! for the adiabatic equation of state
!
!===============================================================================
!
subroutine hlld(n, h, u, f)
use config , only : gamma
use interpolation, only : reconstruct
use variables , only : nvr, nfl, nqt
use variables , only : idn, imx, imy, imz, ien, ivx, ivy, ivz, ipr
use variables , only : ibx, iby, ibz
#ifdef GLM
use variables , only : iph
#endif /* GLM */
implicit none
! input/output arguments
!
integer , intent(in) :: n
real , intent(in) :: h
real, dimension(nvr,n), intent(in) :: u
real, dimension(nqt,n), intent(out) :: f
! local variables
!
integer :: p, i
real, dimension(nvr,n) :: q, ql, qr, ul, ur
real, dimension(nqt,n) :: fl, fr, fn
real, dimension(n) :: cl, cr
real, dimension(nvr) :: u1l, u1r, u2, q1l, q1r, q2
real :: sl, sr, slmv, srmv, slmm, srmm, sm, smvl, smvr &
, sml, smr
real :: ptl, ptr, pt, bx2, div, fac, bxs, dlsq, drsq
!
!-------------------------------------------------------------------------------
!
! calculate the primitive variables
!
call cons2prim(n, u, q)
! reconstruct the left and right states of the primitive variables
!
do p = 1, nfl
call reconstruct(n, h, q(p,:), ql(p,:), qr(p,:))
end do
! reconstruct the left and right states of the magnetic field components
!
do p = ibx, ibz
call reconstruct(n, h, q(p,:), ql(p,:), qr(p,:))
end do
#ifdef GLM
! reconstruct the left and right states of the scalar potential
!
call reconstruct(n, h, q(iph,:), ql(iph,:), qr(iph,:))
! obtain the state values for Bx and Psi for the GLM-MHD equations
!
cl(:) = 0.5d0 * ((qr(ibx,:) + ql(ibx,:)) - (qr(iph,:) - ql(iph,:)) / cmax)
cr(:) = 0.5d0 * ((qr(iph,:) + ql(iph,:)) - (qr(ibx,:) - ql(ibx,:)) * cmax)
ql(ibx,:) = cl(:)
qr(ibx,:) = cl(:)
ql(iph,:) = cr(:)
qr(iph,:) = cr(:)
#endif /* GLM */
! calculate conservative variables at states
!
call prim2cons(n, ql, ul)
call prim2cons(n, qr, ur)
! calculate fluxes and speeds
!
call fluxspeed(n, ql, ul, fl, cl)
call fluxspeed(n, qr, ur, fr, cr)
! iterate over all points and calculate the HLLD flux
!
do i = 1, n
! calculate min and max and intermediate speeds: eq. (67)
!
sl = min(ql(ivx,i) - cl(i), qr(ivx,i) - cr(i))
sr = max(ql(ivx,i) + cl(i), qr(ivx,i) + cr(i))
! all speeds > 0, left side flux
!
if (sl .ge. 0.0) then
fn(:,i) = fl(:,i)
! all speeds < 0, right side flux
!
else if (sr .le. 0.0) then
fn(:,i) = fr(:,i)
! intermediate states
!
else ! sl < 0 & sr > 0
! calculate the total left and right pressures
!
ptl = ql(ipr,i) + 0.5d0 * sum(ql(ibx:ibz,i)**2)
ptr = qr(ipr,i) + 0.5d0 * sum(qr(ibx:ibz,i)**2)
! useful speed differences
!
slmv = sl - ql(ivx,i)
srmv = sr - qr(ivx,i)
! the speed of contact discontinuity (eq. 38, average from the both states)
!
div = slmv * ql(idn,i) - srmv * qr(idn,i)
slmm = (slmv * ul(imx,i) - srmv * ur(imx,i) - ptl + ptr) / div
div = srmv * qr(idn,i) - slmv * ql(idn,i)
srmm = (srmv * ur(imx,i) - slmv * ul(imx,i) - ptr + ptl) / div
sm = 0.5d0 * (slmm + srmm)
! more useful speed differences
!
slmm = sl - sm
srmm = sr - sm
smvl = sm - ql(ivx,i)
smvr = sm - qr(ivx,i)
bx2 = ql(ibx,i) * qr(ibx,i)
! pressure of the intermediate states (eq. 41)
!
pt = 0.5d0 * (ptl + ptr + ql(idn,i) * slmv * smvl &
+ qr(idn,i) * srmv * smvr)
! calculate the left intermediate state variables
!
q1l(idn) = ql(idn,i) * slmv / slmm
q1l(ivx) = sm
q1l(ibx) = ql(ibx,i)
div = ql(idn,i) * slmv * slmm - bx2
if ((sm .eq. ql(ivx,i)) .or. (div .eq. 0.0) &
.or. (bx2 .ge. gamma * ql(ipr,i)) &
.or. (sl .eq. (ql(ivx,i) + cl(i))) &
.or. (sl .eq. (ql(ivx,i) - cl(i)))) then
q1l(ivy) = ql(ivy,i)
q1l(ivz) = ql(ivz,i)
q1l(iby) = ql(iby,i)
q1l(ibz) = ql(ibz,i)
else
fac = ql(ibx,i) * smvl / div
q1l(ivy) = ql(ivy,i) - ql(iby,i) * fac
q1l(ivz) = ql(ivz,i) - ql(ibz,i) * fac
fac = (ql(idn,i) * slmv**2 - bx2) / div
q1l(iby) = ql(iby,i) * fac
q1l(ibz) = ql(ibz,i) * fac
end if
! convert the left intermediate state to the conservative form
!
u1l(idn) = q1l(idn)
u1l(imx) = q1l(idn) * q1l(ivx)
u1l(imy) = q1l(idn) * q1l(ivy)
u1l(imz) = q1l(idn) * q1l(ivz)
if (slmm .ne. 0.0) then
u1l(ien) = (slmv * ul(ien,i) - ptl * ql(ivx,i) + pt * sm &
+ ql(ibx,i) * (sum(ql(ivx:ivz,i) * ql(ibx:ibz,i)) &
- sum(q1l(ivx:ivz) * q1l(ibx:ibz)))) / slmm
else
u1l(ien) = ul(ien,i)
end if
u1l(ibx) = q1l(ibx)
u1l(iby) = q1l(iby)
u1l(ibz) = q1l(ibz)
#ifdef GLM
u1l(iph) = ul(iph,i)
#endif /* GLM */
! calculate the right intermediate state variables
!
q1r(idn) = qr(idn,i) * srmv / srmm
q1r(ivx) = sm
q1r(ibx) = qr(ibx,i)
div = qr(idn,i) * srmv * srmm - bx2
if ((sm .eq. qr(ivx,i)) .or. (div .eq. 0.0) &
.or. (bx2 .ge. gamma * qr(ipr,i)) &
.or. (sr .eq. (qr(ivx,i) + cr(i))) &
.or. (sr .eq. (qr(ivx,i) - cr(i)))) then
q1r(ivy) = qr(ivy,i)
q1r(ivz) = qr(ivz,i)
q1r(iby) = qr(iby,i)
q1r(ibz) = qr(ibz,i)
else
fac = qr(ibx,i) * smvr / div
q1r(ivy) = qr(ivy,i) - qr(iby,i) * fac
q1r(ivz) = qr(ivz,i) - qr(ibz,i) * fac
fac = (qr(idn,i) * srmv**2 - bx2) / div
q1r(iby) = qr(iby,i) * fac
q1r(ibz) = qr(ibz,i) * fac
end if
! convert the right intermediate state to the conservative form
!
u1r(idn) = q1r(idn)
u1r(imx) = q1r(idn) * q1r(ivx)
u1r(imy) = q1r(idn) * q1r(ivy)
u1r(imz) = q1r(idn) * q1r(ivz)
if (srmm .ne. 0.0) then
u1r(ien) = (srmv * ur(ien,i) - ptr * qr(ivx,i) + pt * sm &
+ qr(ibx,i) * (sum(qr(ivx:ivz,i) * qr(ibx:ibz,i)) &
- sum(q1r(ivx:ivz) * q1r(ibx:ibz)))) / srmm
else
u1r(ien) = ur(ien,i)
end if
u1r(ibx) = q1r(ibx)
u1r(iby) = q1r(iby)
u1r(ibz) = q1r(ibz)
#ifdef GLM
u1r(iph) = ur(iph,i)
#endif /* GLM */
! Alfven speeds (eq. 51)
!
sml = sm - abs(ql(ibx,i)) / sqrt(q1l(idn))
smr = sm + abs(qr(ibx,i)) / sqrt(q1r(idn))
! intermediate discontinuities
!
if (sml .ge. 0.0d0) then
! calculate the left intermediate flux
!
fn(:,i) = fl(:,i) + sl * (u1l(:) - ul(:,i))
else if (smr .le. 0.0d0) then
! calculate the right intermediate flux
!
fn(:,i) = fr(:,i) + sr * (u1r(:) - ur(:,i))
else ! sml < 0 & smr > 0
! obtain the normal component of magnetic field
!
if (ql(ibx,i) .gt. 0.0d0) then
bxs = 1.0d0
else if (ql(ibx,i) .lt. 0.0d0) then
bxs = -1.0d0
else
bxs = 0.0d0
end if
! compute the density root squares
!
dlsq = sqrt(q1l(idn))
drsq = sqrt(q1r(idn))
div = dlsq + drsq
! calculate the velocity components
!
q2(ivx) = sm
q2(ivy) = (dlsq * q1l(ivy) + drsq * q1r(ivy) &
+ (q1r(iby) - q1l(iby)) * bxs) / div
q2(ivz) = (dlsq * q1l(ivz) + drsq * q1r(ivz) &
+ (q1r(ibz) - q1l(ibz)) * bxs) / div
! calculate the magnetic field components
!
q2(ibx) = ql(ibx,i)
q2(iby) = (dlsq * q1r(iby) + drsq * q1l(iby) &
+ dlsq * drsq * (q1r(ivy) - q1l(ivy)) * bxs) / div
q2(ibz) = (dlsq * q1r(ibz) + drsq * q1l(ibz) &
+ dlsq * drsq * (q1r(ivz) - q1l(ivz)) * bxs) / div
if (sm .ge. 0.0) then
! convert the left Alfven intermediate state to the conservative form
!
u2(idn) = u1l(idn)
u2(imx) = u1l(idn) * q2(ivx)
u2(imy) = u1l(idn) * q2(ivy)
u2(imz) = u1l(idn) * q2(ivz)
u2(ien) = u1l(ien) - dlsq * (sum(q1l(ivx:ivz) * q1l(ibx:ibz)) &
- sum(q2 (ivx:ivz) * q2 (ibx:ibz))) * bxs
u2(ibx) = u1l(ibx)
u2(iby) = q2(iby)
u2(ibz) = q2(ibz)
#ifdef GLM
u2(iph) = u1l(iph)
#endif /* GLM */
! calculate the numerical flux
!
fn(:,i) = fl(:,i) + sml * u2(:) - (sml - sl) * u1l(:) - sl * ul(:,i)
else ! sm < 0
! convert the right Alfven intermediate state to the conservative form
!
u2(idn) = u1r(idn)
u2(imx) = u1r(idn) * q2(ivx)
u2(imy) = u1r(idn) * q2(ivy)
u2(imz) = u1r(idn) * q2(ivz)
u2(ien) = u1r(ien) + drsq * (sum(q1r(ivx:ivz) * q1r(ibx:ibz)) &
- sum(q2 (ivx:ivz) * q2 (ibx:ibz))) * bxs
u2(ibx) = u1r(ibx)
u2(iby) = q2(iby)
u2(ibz) = q2(ibz)
#ifdef GLM
u2(iph) = u1r(iph)
#endif /* GLM */
! calculate the numerical flux
!
fn(:,i) = fr(:,i) + smr * u2(:) - (smr - sr) * u1r(:) - sr * ur(:,i)
end if
end if
end if
end do
! calculate the numerical flux derivative
!
f( 1:nfl,2:n) = - fn( 1:nfl,2:n) + fn( 1:nfl,1:n-1)
f(ibx:ibz,2:n) = - fn(ibx:ibz,2:n) + fn(ibx:ibz,1:n-1)
#ifdef GLM
f(iph ,2:n) = - fn(iph ,2:n) + fn(iph ,1:n-1)
#endif /* GLM */
!-------------------------------------------------------------------------------
!
end subroutine hlld
#endif /* ADI */
#endif /* HLLD */
#endif /* MHD */
!
!===============================================================================
!
! fluxspeed: subroutine computes fluxes and speeds for a given set of equations
!
!===============================================================================
!
subroutine fluxspeed(n, q, u, f, c)
use config , only : gamma, csnd, csnd2
use variables, only : nvr, nqt
use variables, only : idn, imx, imy, imz, ivx, ivy, ivz
#ifdef ADI
use variables, only : ipr, ien
#endif /* ADI */
#ifdef MHD
use variables, only : ibx, iby, ibz
#ifdef GLM
use variables, only : iph
#endif /* GLM */
#endif /* MHD */
implicit none
! input/output arguments
!
integer , intent(in) :: n
real, dimension(nvr,n), intent(in) :: q, u
real, dimension(nqt,n), intent(out) :: f
real, dimension(n) , intent(out) :: c
! local variables
!
integer :: i
real :: bb, pm, vb, cs, cb, ca
!
!-------------------------------------------------------------------------------
!
! sweep over all points
!
do i = 1, n
! compute fluxes
!
f(idn,i) = u(imx,i)
#ifdef ADI
f(imx,i) = q(ivx,i) * u(imx,i) + q(ipr,i)
#endif /* ADI */
#ifdef ISO
f(imx,i) = q(ivx,i) * u(imx,i) + q(idn,i) * csnd2
#endif /* ISO */
f(imy,i) = q(ivx,i) * u(imy,i)
f(imz,i) = q(ivx,i) * u(imz,i)
#ifdef ADI
f(ien,i) = q(ivx,i) * (u(ien,i) + q(ipr,i))
#endif /* ADI */
#ifdef MHD
bb = sum(q(ibx:ibz,i) * q(ibx:ibz,i))
pm = 0.5 * bb
vb = sum(q(ivx:ivz,i) * q(ibx:ibz,i))
f(imx,i) = f(imx,i) - q(ibx,i) * q(ibx,i) + pm
f(imy,i) = f(imy,i) - q(ibx,i) * q(iby,i)
f(imz,i) = f(imz,i) - q(ibx,i) * q(ibz,i)
#ifdef ADI
f(ien,i) = f(ien,i) + q(ivx,i) * pm - q(ibx,i) * vb
#endif /* ADI */
#ifdef GLM
f(ibx,i) = q(iph,i)
f(iby,i) = q(ivx,i) * q(iby,i) - q(ibx,i) * q(ivy,i)
f(ibz,i) = q(ivx,i) * q(ibz,i) - q(ibx,i) * q(ivz,i)
f(iph,i) = q(ibx,i)
#endif /* GLM */
#endif /* MHD */
! compute speeds
!
#ifdef MHD
#ifdef ADI
cs = gamma * q(ipr,i)
#endif /* ADI */
#ifdef ISO
cs = csnd2 * q(idn,i)
#endif /* ISO */
cb = cs + bb
ca = q(ibx,i) * q(ibx,i)
c(i) = sqrt(0.5 * (cb + sqrt(max(0.0, cb * cb - 4.0 * cs * ca))) / q(idn,i))
#else /* MHD */
#ifdef ADI
c(i) = sqrt(gamma * q(ipr,i) / q(idn,i))
#endif /* ADI */
#ifdef ISO
c(i) = csnd
#endif /* ISO */
#endif /* MHD */
end do
!-------------------------------------------------------------------------------
!
end subroutine fluxspeed
#ifdef MHD
!
!===============================================================================
!
! emf: subroutine computes magnetic fluxes (electromotive force)
!
!===============================================================================
!
subroutine emf(n, v, b, f)
implicit none
! input/output arguments
!
integer , intent(in) :: n
real, dimension(3,n), intent(in) :: v, b
real, dimension(3,n), intent(out) :: f
! local variables
!
integer :: i
!
!-------------------------------------------------------------------------------
!
! sweep over all points
!
do i = 1, n
f(1,i) = 0.0
f(2,i) = v(1,i) * b(2,i) - b(1,i) * v(2,i)
f(3,i) = v(1,i) * b(3,i) - b(1,i) * v(3,i)
end do
!
!-------------------------------------------------------------------------------
!
end subroutine emf
#endif /* MHD */
!
!===============================================================================
!
! cons2prim: subroutine converts primitive variables to conservative
!
!===============================================================================
!
subroutine cons2prim(n, u, q)
use config , only : gammam1
use variables, only : nvr
use variables, only : idn, imx, imy, imz, ivx, ivy, ivz
#ifdef ADI
use variables, only : ipr, ien
#endif /* ADI */
#ifdef MHD
use variables, only : ibx, iby, ibz
#ifdef GLM
use variables, only : iph
#endif /* GLM */
#endif /* MHD */
implicit none
! input/output arguments
!
integer , intent(in) :: n
real, dimension(nvr,n), intent(in) :: u
real, dimension(nvr,n), intent(out) :: q
! local variables
!
integer :: i
real :: dni, ei, ek, em
!
!-------------------------------------------------------------------------------
!
do i = 1, n
dni = 1.0 / u(idn,i)
q(idn,i) = u(idn,i)
q(ivx,i) = dni * u(imx,i)
q(ivy,i) = dni * u(imy,i)
q(ivz,i) = dni * u(imz,i)
#ifdef ADI
ek = 0.5 * sum(u(imx:imz,i) * q(ivx:ivz,i))
ei = u(ien,i) - ek
#ifdef MHD
em = 0.5 * sum(u(ibx:ibz,i) * u(ibx:ibz,i))
ei = ei - em
#endif /* MHD */
q(ipr,i) = gammam1 * ei
#endif /* ADI */
#ifdef MHD
q(ibx,i) = u(ibx,i)
q(iby,i) = u(iby,i)
q(ibz,i) = u(ibz,i)
#ifdef GLM
q(iph,i) = u(iph,i)
#endif /* GLM */
#endif /* MHD */
end do
!-------------------------------------------------------------------------------
!
end subroutine cons2prim
!
!===============================================================================
!
! prim2cons: subroutine converts primitive variables to conservative
!
!===============================================================================
!
subroutine prim2cons(n, q, u)
use config , only : gammam1i
use variables, only : nvr
use variables, only : idn, imx, imy, imz, ivx, ivy, ivz
#ifdef ADI
use variables, only : ipr, ien
#endif /* ADI */
#ifdef MHD
use variables, only : ibx, iby, ibz
#ifdef GLM
use variables, only : iph
#endif /* GLM */
#endif /* MHD */
implicit none
! input/output arguments
!
integer , intent(in) :: n
real, dimension(nvr,n), intent(in) :: q
real, dimension(nvr,n), intent(out) :: u
! local variables
!
integer :: i
real :: ei, ek, em
!
!-------------------------------------------------------------------------------
!
do i = 1, n
u(idn,i) = q(idn,i)
u(imx,i) = q(idn,i) * q(ivx,i)
u(imy,i) = q(idn,i) * q(ivy,i)
u(imz,i) = q(idn,i) * q(ivz,i)
#ifdef ADI
ei = gammam1i * q(ipr,i)
ek = 0.5 * sum(u(imx:imz,i) * q(ivx:ivz,i))
u(ien,i) = ei + ek
#endif /* ADI */
#ifdef MHD
#ifdef ADI
em = 0.5 * sum(q(ibx:ibz,i) * q(ibx:ibz,i))
u(ien,i) = u(ien,i) + em
#endif /* ADI */
u(ibx,i) = q(ibx,i)
u(iby,i) = q(iby,i)
u(ibz,i) = q(ibz,i)
#ifdef GLM
u(iph,i) = q(iph,i)
#endif /* GLM */
#endif /* MHD */
end do
!-------------------------------------------------------------------------------
!
end subroutine prim2cons
!
!===============================================================================
!
! maxspeed: function to calculate maximum speed in the system
!
!===============================================================================
!
function maxspeed(u)
use config , only : im, jm, km, ib, ie, jb, je, kb, ke
#ifdef ADI
use config , only : gamma
#endif /* ADI */
#ifdef ISO
use config , only : csnd, csnd2
#endif /* ISO */
use variables , only : nvr, nqt
use variables , only : idn, ivx, ivz
#ifdef ADI
use variables , only : ipr
#endif /* ADI */
#ifdef MHD
use variables , only : ibx, iby, ibz
#endif /* MHD */
implicit none
! input arguments
!
real, dimension(nqt,im,jm,km), intent(in) :: u
! local variables
!
integer :: i, j, k
real :: vv, v, c
#ifdef MHD
real :: bb
#endif /* MHD */
real :: maxspeed
! local arrays
!
real, dimension(nvr,im) :: q
!
!-------------------------------------------------------------------------------
!
maxspeed = 0.0
! iterate over all points and calculate maximum speed
!
do k = kb, ke
do j = jb, je
call cons2prim(im, u(1:nqt,1:im,j,k), q(1:nqt,1:im))
do i = ib, ie
! calculate the velocity
!
vv = sum(q(ivx:ivz,i)**2)
v = sqrt(vv)
#ifdef MHD
bb = sum(q(ibx:ibz,i)**2)
#endif /* MHD */
! calculate the maximum characteristic speed
!
#ifdef MHD
#ifdef ADI
c = sqrt((gamma * q(ipr,i) + bb) / q(idn,i))
#endif /* ADI */
#ifdef ISO
c = sqrt(csnd2 + bb / q(idn,i))
#endif /* ISO */
#else /* MHD */
#ifdef ADI
c = sqrt(gamma * q(ipr,i) / q(idn,i))
#endif /* ADI */
#ifdef ISO
c = csnd
#endif /* ISO */
#endif /* MHD */
! calculate maximum of the speed
!
maxspeed = max(maxspeed, v + c)
end do
end do
end do
!
!-------------------------------------------------------------------------------
!
end function maxspeed
!===============================================================================
!
end module