amun-code/sources/problems.F90
2024-03-07 17:26:02 -03:00

2484 lines
64 KiB
Fortran

!!******************************************************************************
!!
!! This file is part of the AMUN source code, a program to perform
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2024 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by
!! the Free Software Foundation, either version 3 of the License, or
!! (at your option) any later version.
!!
!! This program is distributed in the hope that it will be useful,
!! but WITHOUT ANY WARRANTY; without even the implied warranty of
!! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
!! GNU General Public License for more details.
!!
!! You should have received a copy of the GNU General Public License
!! along with this program. If not, see <http://www.gnu.org/licenses/>.
!!
!!******************************************************************************
!!
!! module: PROBLEMS
!!
!! This module handles the initialization of various test and research
!! problems.
!!
!!
!!******************************************************************************
!
module problems
implicit none
character(len=64), save :: problem_name = "none"
private
public :: initialize_problems, finalize_problems
public :: problem_name
!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!
contains
!
!===============================================================================
!!
!!*** PUBLIC SUBROUTINES *****************************************************
!!
!===============================================================================
!
!===============================================================================
!
! subroutine INITIALIZE_PROBLEMS:
! ------------------------------
!
! Subroutine prepares module PROBLEMS.
!
! Arguments:
!
! problem - the problem name
! rcount - the run count for restarted jobs
! verbose - a logical flag turning the information printing;
! status - an integer flag for error return value;
!
!===============================================================================
!
subroutine initialize_problems(problem, rcount, verbose, status)
use mesh , only : setup_problem
use parameters , only : get_parameter
implicit none
character(len=64), intent(in) :: problem
integer , intent(in) :: rcount
logical , intent(in) :: verbose
integer , intent(out) :: status
!-------------------------------------------------------------------------------
!
status = 0
problem_name = problem
select case(trim(problem))
case("riemann")
setup_problem => setup_problem_riemann
case("blast")
setup_problem => setup_problem_blast
case("st", "sedov-taylor", "ST", "Sedov-Taylor")
setup_problem => setup_problem_sedov_taylor
case("implosion")
setup_problem => setup_problem_implosion
case("kh", "kelvinhelmholtz", "kelvin-helmholtz", "Kelvin-Helmholtz")
setup_problem => setup_problem_kelvin_helmholtz
case("rt", "rayleightaylor", "rayleigh-taylor")
setup_problem => setup_problem_rayleigh_taylor
case("ot", "orszag-tang", "Orszag-Tang")
setup_problem => setup_problem_orszag_tang
case("current-sheet", "current_sheet")
setup_problem => setup_problem_current_sheet
case("tearing-mode", "tearing_mode", "tearing")
setup_problem => setup_problem_tearing
case("turbulence")
setup_problem => setup_problem_turbulence
case("stellar_wind", "stellar-wind", "wind")
setup_problem => setup_problem_wind
case default
end select
!-------------------------------------------------------------------------------
!
end subroutine initialize_problems
!
!===============================================================================
!
! subroutine FINALIZE_PROBLEMS:
! ----------------------------
!
! Subroutine releases memory used by the module.
!
! Arguments:
!
! status - an integer flag for error return value;
!
!===============================================================================
!
subroutine finalize_problems(status)
implicit none
integer, intent(out) :: status
!-------------------------------------------------------------------------------
!
status = 0
!-------------------------------------------------------------------------------
!
end subroutine finalize_problems
!
!===============================================================================
!!
!!*** PRIVATE SUBROUTINES ****************************************************
!!
!===============================================================================
!
!===============================================================================
!
! subroutine SETUP_PROBLEM_RIEMANN:
! --------------------------------
!
! Subroutine sets the initial conditions for the general Riemann problem.
!
! Arguments:
!
! pdata - pointer to the datablock structure of the currently initialized
! block;
!
!
!===============================================================================
!
subroutine setup_problem_riemann(pdata)
use blocks , only : block_data
use coordinates, only : nn => bcells
use coordinates, only : ax, adx
use equations , only : prim2cons
use equations , only : nv
use equations , only : qpbnd
implicit none
type(block_data), pointer, intent(inout) :: pdata
integer :: p, i, j, k
real(kind=8) :: xl, xr
real(kind=8) :: dx, dxh
real(kind=8), dimension(nv,nn) :: q, u
real(kind=8), dimension(nn) :: x
!
!-------------------------------------------------------------------------------
!
! prepare block coordinates
!
x(:) = pdata%meta%xmin + ax(pdata%meta%level,:)
! calculate mesh intervals and areas
!
dx = adx(pdata%meta%level)
dxh = 0.5d+00 * dx
! set the left and right states of the primitive variables
!
do i = 1, nn
xl = x(i) - dxh
xr = x(i) + dxh
if (xr <= 0.0d+00) then
do p = 1, nv
q(p,i) = qpbnd(p,1,1)
end do
else if (xl >= 0.0d+00) then
do p = 1, nv
q(p,i) = qpbnd(p,1,2)
end do
else
do p = 1, nv
q(p,i) = (xr * qpbnd(p,1,2) - xl * qpbnd(p,1,1)) / dx
end do
end if
end do ! i = 1, im
! convert the primitive variables to conservative ones
!
call prim2cons(q(:,:), u(:,:))
! iterate over all positions in the YZ plane
!
#if NDIMS == 2
k = 1
#endif /* NDIMS == 2 */
#if NDIMS == 3
do k = 1, nn
#endif /* NDIMS == 3 */
do j = 1, nn
! copy the conserved variables to the current block
!
pdata%u(:,:,j,k) = u(:,:)
! copy the primitive variables to the current block
!
pdata%q(:,:,j,k) = q(:,:)
end do ! j = 1, nn
#if NDIMS == 3
end do ! k = 1, nn
#endif /* NDIMS == 3 */
!-------------------------------------------------------------------------------
!
end subroutine setup_problem_riemann
!
!===============================================================================
!
! subroutine SETUP_PROBLEM_BLAST:
! ------------------------------
!
! Subroutine sets the initial conditions for the spherical blast problem.
!
! Arguments:
!
! pdata - pointer to the datablock structure of the currently initialized
! block;
!
!
!===============================================================================
!
subroutine setup_problem_blast(pdata)
! include external procedures and variables
!
use blocks , only : block_data
use constants , only : d2r
use coordinates, only : nn => bcells
use coordinates, only : ax, ay, adx, ady, advol
#if NDIMS == 3
use coordinates, only : az, adz
#endif /* NDIMS == 3 */
use equations , only : prim2cons
use equations , only : adiabatic_index
use equations , only : nv
use equations , only : idn, ivx, ivy, ivz, ipr, ibx, iby, ibz, ibp
use parameters , only : get_parameter
! local variables are not implicit by default
!
implicit none
! input arguments
!
type(block_data), pointer, intent(inout) :: pdata
! default parameter values
!
real(kind=8), save :: dens = 1.00d+00
real(kind=8), save :: ratio = 1.00d+02
real(kind=8), save :: radius = 1.00d-01
real(kind=8), save :: csnd = 4.0824829046386301635d-01
real(kind=8), save :: buni = 1.00d+00
real(kind=8), save :: angle = 4.50d+01
#if NDIMS == 3
integer , save :: nsubgrid = 10
#endif /* NDIMS == 3 */
! local saved parameters
!
logical , save :: first = .true.
real(kind=8), save :: dn_amb, dn_ovr
real(kind=8), save :: pr_amb, pr_ovr
real(kind=8), save :: bx, by
real(kind=8), save :: r2
! local variables
!
integer :: i, j, k
#if NDIMS == 3
integer :: ic, jc, kc
#endif /* NDIMS == 3 */
real(kind=8) :: xl, yl, xu, yu, rl, ru
real(kind=8) :: dx, dy, dxh, dyh, dvol
real(kind=8) :: sn
#if NDIMS == 3
real(kind=8) :: zl, zu, dz, dzh
real(kind=8) :: xb, yb, zb
real(kind=8) :: xt, yt, zt
real(kind=8) :: fc_inc
#else /* NDIMS == 3 */
real(kind=8) :: rlu, rul
real(kind=8) :: xb, yb
real(kind=8) :: xt, yt
real(kind=8) :: ph
#endif /* NDIMS == 3 */
real(kind=8) :: fc_amb, fc_ovr
! local arrays
!
real(kind=8), dimension(nv,nn) :: q, u
real(kind=8), dimension(nn) :: x, y
#if NDIMS == 3
real(kind=8), dimension(nn) :: z
! allocatable arrays
!
real(kind=8), dimension(:), allocatable :: xm, ym, zm
real(kind=8), dimension(:), allocatable :: xp, yp, zp
#endif /* NDIMS == 3 */
!
!-------------------------------------------------------------------------------
!
! prepare problem constants during the first subroutine call
!
if (first) then
! get problem parameters
!
call get_parameter("dens" , dens )
call get_parameter("ratio" , ratio )
call get_parameter("radius" , radius)
call get_parameter("sound_speed", csnd )
call get_parameter("buni" , buni )
call get_parameter("angle" , angle )
#if NDIMS == 3
! get the fine grid resolution
!
call get_parameter("nsubgrid", nsubgrid)
! correct subgrid resolution if necessary
!
nsubgrid = max(1, nsubgrid)
#endif /* NDIMS == 3 */
! calculate the overdense and ambient region densities
!
dn_amb = dens
if (ipr > 0) then
dn_ovr = dn_amb
! calculate parallel and perpendicular pressures from sound speeds
!
pr_amb = dens * csnd * csnd / adiabatic_index
pr_ovr = pr_amb * ratio
else
dn_ovr = dn_amb * ratio
end if
! calculate initial uniform field components
!
if (ibx > 0) then
sn = sin(d2r * angle)
bx = buni * sqrt(1.0d+00 - sn * sn)
by = buni * sn
end if
! calculate the square of radius
!
r2 = radius * radius
! reset the first execution flag
!
first = .false.
end if ! first call
! prepare block coordinates
!
x(:) = pdata%meta%xmin + ax(pdata%meta%level,:)
y(:) = pdata%meta%ymin + ay(pdata%meta%level,:)
#if NDIMS == 3
z(:) = pdata%meta%zmin + az(pdata%meta%level,:)
#endif /* NDIMS == 3 */
! calculate mesh intervals and areas
!
dx = adx(pdata%meta%level)
dy = ady(pdata%meta%level)
#if NDIMS == 3
dz = adz(pdata%meta%level)
#endif /* NDIMS == 3 */
dxh = 0.5d+00 * dx
dyh = 0.5d+00 * dy
#if NDIMS == 3
dzh = 0.5d+00 * dz
#endif /* NDIMS == 3 */
dvol = advol(pdata%meta%level)
#if NDIMS == 3
! allocate subgrid coordinates
!
allocate(xm(nsubgrid), ym(nsubgrid), zm(nsubgrid))
allocate(xp(nsubgrid), yp(nsubgrid), zp(nsubgrid))
! and generate them
!
xm(:) = (1.0d+00 * (/(i, i = 0, nsubgrid - 1)/)) / nsubgrid
ym(:) = xm(:)
zm(:) = xm(:)
xm(:) = xm(:) * dx
ym(:) = ym(:) * dy
zm(:) = zm(:) * dz
xp(:) = (1.0d+00 * (/(i, i = 1, nsubgrid )/)) / nsubgrid
yp(:) = xp(:)
zp(:) = xp(:)
xp(:) = xp(:) * dx
yp(:) = yp(:) * dy
zp(:) = zp(:) * dz
! calculate the factor increment for the given subgrid
!
fc_inc = dvol / nsubgrid**3
#endif /* NDIMS == 3 */
! set the ambient density and pressure
!
q(idn,:) = dn_amb
if (ipr > 0) q(ipr,:) = pr_amb
! reset velocity components
!
q(ivx,:) = 0.0d+00
q(ivy,:) = 0.0d+00
q(ivz,:) = 0.0d+00
! if magnetic field is present, set it to be uniform with the desired strength
! and orientation
!
if (ibx > 0) then
q(ibx,:) = bx
q(iby,:) = by
q(ibz,:) = 0.0d+00
q(ibp,:) = 0.0d+00
end if
! iterate over all positions in the YZ plane
!
#if NDIMS == 2
k = 1
#endif /* NDIMS == 2 */
#if NDIMS == 3
do k = 1, nn
! calculate the corner Z coordinates
!
zl = abs(z(k)) - dzh
zu = abs(z(k)) + dzh
#endif /* NDIMS == 3 */
do j = 1, nn
! calculate the corner Y coordinates
!
yl = abs(y(j)) - dyh
yu = abs(y(j)) + dyh
! sweep along the X coordinate
!
do i = 1, nn
! calculate the corner X coordinates
!
xl = abs(x(i)) - dxh
xu = abs(x(i)) + dxh
! calculate the minimum and maximum corner distances from the origin
!
#if NDIMS == 3
rl = xl * xl + yl * yl + zl * zl
ru = xu * xu + yu * yu + zu * zu
#else /* NDIMS == 3 */
rl = xl * xl + yl * yl
ru = xu * xu + yu * yu
#endif /* NDIMS == 3 */
! set the initial density and pressure in cells laying completely within
! the blast radius
!
if (ru <= r2) then
! set the overpressure region density
!
q(idn,i) = dn_ovr
! set the overpressure region pressure
!
if (ipr > 0) q(ipr,i) = pr_ovr
! set the initial pressure in the cell completely outside the radius
!
else if (rl >= r2) then
! set the ambient region density
!
q(idn,i) = dn_amb
! set the ambient medium pressure
!
if (ipr > 0) q(ipr,i) = pr_amb
! integrate density or pressure in cells which are crossed by the circule with
! the given radius
!
else
#if NDIMS == 3
! interpolate the factor using subgrid
!
fc_ovr = 0.0d+00
do kc = 1, nsubgrid
zb = (zl + zm(kc))**2
zt = (zl + zp(kc))**2
do jc = 1, nsubgrid
yb = (yl + ym(jc))**2
yt = (yl + yp(jc))**2
do ic = 1, nsubgrid
xb = (xl + xm(ic))**2
xt = (xl + xp(ic))**2
! update the integration factor depending on the subcell position
!
if ((xt + yt + zt) <= r2) then
fc_ovr = fc_ovr + fc_inc
else if ((xb + yb + zb) < r2) then
fc_ovr = fc_ovr + 0.5d+00 * fc_inc
end if
end do ! ic = 1, nsubgrid
end do ! jc = 1, nsubgrid
end do ! kc = 1, nsubgrid
#else /* NDIMS == 3 */
! calculate the distance of remaining corners
!
rlu = xl * xl + yu * yu
rul = xu * xu + yl * yl
! separate in the cases of which corners lay inside, and which outside
! the radius
!
if (min(rlu, rul) >= r2) then
! only one cell corner inside the radius
!
! calculate middle coordinates of the radius-edge crossing point
!
xb = sqrt(r2 - yl**2) - xl
yb = sqrt(r2 - xl**2) - yl
! calculate the sin(½φ), φ, and sin(φ)
!
sn = 0.5d+00 * sqrt(xb**2 + yb**2) / radius
ph = 2.0d+00 * asin(sn)
sn = sin(ph)
! calculate the area of cell intersection with the radius
!
fc_ovr = 0.5d+00 * (xb * yb + (ph - sn) * r2)
else if (rlu >= r2) then
! two lower corners inside the radius
!
! calculate middle coordinates of the radius-edge crossing point
!
yb = sqrt(r2 - xl**2) - yl
yt = sqrt(r2 - xu**2) - yl
! calculate the sin(½φ), φ, and sin(φ)
!
sn = 0.5d+00 * sqrt(dx**2 + (yt - yb)**2) / radius
ph = 2.0d+00 * asin(sn)
sn = sin(ph)
! calculate the area of cell intersection with the radius
!
fc_ovr = 0.5d+00 * ((yt + yb) * dx + (ph - sn) * r2)
else if (rul >= r2) then
! two left corners inside the radius
!
! calculate middle coordinates of the radius-edge crossing point
!
xb = sqrt(r2 - yl**2) - xl
xt = sqrt(r2 - yu**2) - xl
! calculate the sin(½φ), φ, and sin(φ)
!
sn = 0.5d+00 * sqrt((xt - xb)**2 + dy**2) / radius
ph = 2.0d+00 * asin(sn)
sn = sin(ph)
! calculate the area of cell intersection with the radius
!
fc_ovr = 0.5d+00 * ((xt + xb) * dy + (ph - sn) * r2)
else
! three corners inside the radius
!
! calculate middle coordinates of the radius-edge crossing point
!
xt = xu - sqrt(r2 - yu**2)
yt = yu - sqrt(r2 - xu**2)
! calculate the sin(½φ), φ, and sin(φ)
!
sn = 0.5d+00 * sqrt(xt**2 + yt**2) / radius
ph = 2.0d+00 * asin(sn)
sn = sin(ph)
! calculate the area of cell intersection with the radius
!
fc_ovr = dvol - 0.5d+00 * (xt * yt - (ph - sn) * r2)
end if
#endif /* NDIMS == 3 */
! normalize coefficients
!
fc_ovr = fc_ovr / dvol
fc_amb = 1.0d+00 - fc_ovr
! integrate the density over the edge cells
!
q(idn,i) = fc_ovr * dn_ovr + fc_amb * dn_amb
! integrate the pressure over the edge cells
!
if (ipr > 0) q(ipr,i) = fc_ovr * pr_ovr + fc_amb * pr_amb
end if
end do ! i = 1, nn
! convert the primitive variables to conservative ones
!
call prim2cons(q(:,:), u(:,:))
! copy the conserved variables to the current block
!
pdata%u(:,:,j,k) = u(:,:)
! copy the primitive variables to the current block
!
pdata%q(:,:,j,k) = q(:,:)
end do ! j = 1, nn
#if NDIMS == 3
end do ! k = 1, nn
! deallocate subgrid coordinates
!
deallocate(xm, ym, zm)
deallocate(xp, yp, zp)
#endif /* NDIMS == 3 */
!-------------------------------------------------------------------------------
!
end subroutine setup_problem_blast
!
!===============================================================================
!
! subroutine SETUP_PROBLEM_SEDOV_TAYLOR:
! -------------------------------------
!
! Subroutine sets the initial conditions for the spherical Sedov-Taylor
! blast problem.
!
! Arguments:
!
! pdata - pointer to the datablock structure of the currently initialized
! block;
!
! References:
!
! [1] Almgren, A. S. et al.,
! "CASTRO: A New Compressible Astrophysical Solver.
! I. Hydrodynamics and Self-Gravity",
! The Astrophysical Journal, 2010, vol. 715, pp. 1221-1238,
! http://dx.doi.org/10.1088/0004-637X/715/2/1221
!
!===============================================================================
!
subroutine setup_problem_sedov_taylor(pdata)
! include external procedures and variables
!
use blocks , only : block_data
use constants , only : d2r
#if NDIMS == 3
use constants , only : pi4
#else /* NDIMS == 3 */
use constants , only : pi
#endif /* NDIMS == 3 */
use coordinates, only : nn => bcells
use coordinates, only : ax, ay, adx, ady, advol
#if NDIMS == 3
use coordinates, only : az, adz
#endif /* NDIMS == 3 */
use equations , only : prim2cons
use equations , only : adiabatic_index
use equations , only : nv
use equations , only : idn, ivx, ivy, ivz, ipr, ibx, iby, ibz, ibp
use parameters , only : get_parameter
! local variables are not implicit by default
!
implicit none
! input arguments
!
type(block_data), pointer, intent(inout) :: pdata
! default parameter values
!
real(kind=8), save :: radius = 1.00d-02
real(kind=8), save :: dens = 1.00d+00
real(kind=8), save :: pres = 1.00d-05
real(kind=8), save :: eexp = 1.00d+00
real(kind=8), save :: buni = 0.00d+00
real(kind=8), save :: angle = 0.00d+00
#if NDIMS == 3
integer , save :: nsubgrid = 10
#endif /* NDIMS == 3 */
! local saved parameters
!
logical , save :: first = .true.
real(kind=8), save :: dn_amb, dn_ovr
real(kind=8), save :: pr_amb, pr_ovr
real(kind=8), save :: bx, by
real(kind=8), save :: r2
! local variables
!
integer :: i, j, k
#if NDIMS == 3
integer :: ic, jc, kc
#endif /* NDIMS == 3 */
real(kind=8) :: xl, yl, xu, yu, rl, ru
real(kind=8) :: sn
#if NDIMS == 3
real(kind=8) :: zl, zu, dz, dzh
real(kind=8) :: xb, yb, zb
real(kind=8) :: xt, yt, zt
real(kind=8) :: fc_inc
#else /* NDIMS == 3 */
real(kind=8) :: rlu, rul
real(kind=8) :: xb, yb
real(kind=8) :: xt, yt
real(kind=8) :: ph
#endif /* NDIMS == 3 */
real(kind=8) :: dx, dy, dxh, dyh, dvol
real(kind=8) :: fc_amb, fc_ovr
! local arrays
!
real(kind=8), dimension(nv,nn) :: q, u
real(kind=8), dimension(nn) :: x, y
#if NDIMS == 3
real(kind=8), dimension(nn) :: z
! allocatable arrays
!
real(kind=8), dimension(:), allocatable :: xm, ym, zm
real(kind=8), dimension(:), allocatable :: xp, yp, zp
#endif /* NDIMS == 3 */
!
!-------------------------------------------------------------------------------
!
! prepare problem constants during the first subroutine call
!
if (first) then
! get problem parameters
!
call get_parameter("radius", radius)
call get_parameter("dens" , dens )
call get_parameter("pres" , pres )
call get_parameter("eexp" , eexp )
call get_parameter("buni" , buni )
call get_parameter("angle" , angle )
#if NDIMS == 3
! get the fine grid resolution
!
call get_parameter("nsubgrid", nsubgrid)
! correct subgrid resolution if necessary
!
nsubgrid = max(1, nsubgrid)
#endif /* NDIMS == 3 */
! calculate the volume of the injection region
!
#if NDIMS == 3
dvol = pi4 * radius**3 / 3.0d+00
#else /* NDIMS == 3 */
dvol = pi * radius**2
#endif /* NDIMS == 3 */
! calculate the overdense and ambient region densities and pressures
!
dn_amb = dens
dn_ovr = dn_amb
pr_amb = pres
pr_ovr = (adiabatic_index - 1.0d+00) * eexp / dvol
! calculate initial uniform field components
!
if (ibx > 0) then
sn = sin(d2r * angle)
bx = buni * sqrt(1.0d+00 - sn * sn)
by = buni * sn
end if
! calculate the square of radius
!
r2 = radius * radius
! reset the first execution flag
!
first = .false.
end if ! first call
! prepare block coordinates
!
x(:) = pdata%meta%xmin + ax(pdata%meta%level,:)
y(:) = pdata%meta%ymin + ay(pdata%meta%level,:)
#if NDIMS == 3
z(:) = pdata%meta%zmin + az(pdata%meta%level,:)
#endif /* NDIMS == 3 */
! calculate mesh intervals and areas
!
dx = adx(pdata%meta%level)
dy = ady(pdata%meta%level)
#if NDIMS == 3
dz = adz(pdata%meta%level)
#endif /* NDIMS == 3 */
dxh = 0.5d+00 * dx
dyh = 0.5d+00 * dy
#if NDIMS == 3
dzh = 0.5d+00 * dz
#endif /* NDIMS == 3 */
dvol = advol(pdata%meta%level)
#if NDIMS == 3
! allocate subgrid coordinates
!
allocate(xm(nsubgrid), ym(nsubgrid), zm(nsubgrid))
allocate(xp(nsubgrid), yp(nsubgrid), zp(nsubgrid))
! and generate them
!
xm(:) = (1.0d+00 * (/(i, i = 0, nsubgrid - 1)/)) / nsubgrid
ym(:) = xm(:)
zm(:) = xm(:)
xm(:) = xm(:) * dx
ym(:) = ym(:) * dy
zm(:) = zm(:) * dz
xp(:) = (1.0d+00 * (/(i, i = 1, nsubgrid )/)) / nsubgrid
yp(:) = xp(:)
zp(:) = xp(:)
xp(:) = xp(:) * dx
yp(:) = yp(:) * dy
zp(:) = zp(:) * dz
! calculate the factor increment for the given subgrid
!
fc_inc = dvol / nsubgrid**3
#endif /* NDIMS == 3 */
! set density and pressure of the ambient
!
q(idn,:) = dn_amb
if (ipr > 0) q(ipr,:) = pr_amb
! reset velocity components
!
q(ivx,:) = 0.0d+00
q(ivy,:) = 0.0d+00
q(ivz,:) = 0.0d+00
! if magnetic field is present, set it to be uniform with the desired strength
! and orientation
!
if (ibx > 0) then
q(ibx,:) = bx
q(iby,:) = by
q(ibz,:) = 0.0d+00
q(ibp,:) = 0.0d+00
end if
! iterate over all positions in the YZ plane
!
#if NDIMS == 2
k = 1
#endif /* NDIMS == 2 */
#if NDIMS == 3
do k = 1, nn
! calculate the corner Z coordinates
!
zl = abs(z(k)) - dzh
zu = abs(z(k)) + dzh
#endif /* NDIMS == 3 */
do j = 1, nn
! calculate the corner Y coordinates
!
yl = abs(y(j)) - dyh
yu = abs(y(j)) + dyh
! sweep along the X coordinate
!
do i = 1, nn
! calculate the corner X coordinates
!
xl = abs(x(i)) - dxh
xu = abs(x(i)) + dxh
! calculate the minimum and maximum corner distances from the origin
!
#if NDIMS == 3
rl = xl * xl + yl * yl + zl * zl
ru = xu * xu + yu * yu + zu * zu
#else /* NDIMS == 3 */
rl = xl * xl + yl * yl
ru = xu * xu + yu * yu
#endif /* NDIMS == 3 */
! set the initial density and pressure in cells laying completely within
! the blast radius
!
if (ru <= r2) then
! set density and pressure for the overpressure region
!
q(idn,i) = dn_ovr
if (ipr > 0) q(ipr,i) = pr_ovr
! set the initial pressure in the cell completely outside the radius
!
else if (rl >= r2) then
! set density and pressure of the ambient
!
q(idn,i) = dn_amb
if (ipr > 0) q(ipr,i) = pr_amb
! integrate density or pressure in cells which are crossed by the circule with
! the given radius
!
else
#if NDIMS == 3
! interpolate the factor using subgrid
!
fc_ovr = 0.0d+00
do kc = 1, nsubgrid
zb = (zl + zm(kc))**2
zt = (zl + zp(kc))**2
do jc = 1, nsubgrid
yb = (yl + ym(jc))**2
yt = (yl + yp(jc))**2
do ic = 1, nsubgrid
xb = (xl + xm(ic))**2
xt = (xl + xp(ic))**2
! update the integration factor depending on the subcell position
!
if ((xt + yt + zt) <= r2) then
fc_ovr = fc_ovr + fc_inc
else if ((xb + yb + zb) < r2) then
fc_ovr = fc_ovr + 0.5d+00 * fc_inc
end if
end do ! ic = 1, nsubgrid
end do ! jc = 1, nsubgrid
end do ! kc = 1, nsubgrid
#else /* NDIMS == 3 */
! calculate the distance of remaining corners
!
rlu = xl * xl + yu * yu
rul = xu * xu + yl * yl
! separate in the cases of which corners lay inside, and which outside
! the radius
!
if (min(rlu, rul) >= r2) then
! only one cell corner inside the radius
!
! calculate middle coordinates of the radius-edge crossing point
!
xb = sqrt(r2 - yl**2) - xl
yb = sqrt(r2 - xl**2) - yl
! calculate the sin(½φ), φ, and sin(φ)
!
sn = 0.5d+00 * sqrt(xb**2 + yb**2) / radius
ph = 2.0d+00 * asin(sn)
sn = sin(ph)
! calculate the area of cell intersection with the radius
!
fc_ovr = 0.5d+00 * (xb * yb + (ph - sn) * r2)
else if (rlu >= r2) then
! two lower corners inside the radius
!
! calculate middle coordinates of the radius-edge crossing point
!
yb = sqrt(r2 - xl**2) - yl
yt = sqrt(r2 - xu**2) - yl
! calculate the sin(½φ), φ, and sin(φ)
!
sn = 0.5d+00 * sqrt(dx**2 + (yt - yb)**2) / radius
ph = 2.0d+00 * asin(sn)
sn = sin(ph)
! calculate the area of cell intersection with the radius
!
fc_ovr = 0.5d+00 * ((yt + yb) * dx + (ph - sn) * r2)
else if (rul >= r2) then
! two left corners inside the radius
!
! calculate middle coordinates of the radius-edge crossing point
!
xb = sqrt(r2 - yl**2) - xl
xt = sqrt(r2 - yu**2) - xl
! calculate the sin(½φ), φ, and sin(φ)
!
sn = 0.5d+00 * sqrt((xt - xb)**2 + dy**2) / radius
ph = 2.0d+00 * asin(sn)
sn = sin(ph)
! calculate the area of cell intersection with the radius
!
fc_ovr = 0.5d+00 * ((xt + xb) * dy + (ph - sn) * r2)
else
! three corners inside the radius
!
! calculate middle coordinates of the radius-edge crossing point
!
xt = xu - sqrt(r2 - yu**2)
yt = yu - sqrt(r2 - xu**2)
! calculate the sin(½φ), φ, and sin(φ)
!
sn = 0.5d+00 * sqrt(xt**2 + yt**2) / radius
ph = 2.0d+00 * asin(sn)
sn = sin(ph)
! calculate the area of cell intersection with the radius
!
fc_ovr = dvol - 0.5d+00 * (xt * yt - (ph - sn) * r2)
end if
#endif /* NDIMS == 3 */
! normalize coefficients
!
fc_ovr = fc_ovr / dvol
fc_amb = 1.0d+00 - fc_ovr
! integrate density and pressure over the edge cells
!
q(idn,i) = fc_ovr * dn_ovr + fc_amb * dn_amb
if (ipr > 0) q(ipr,i) = fc_ovr * pr_ovr + fc_amb * pr_amb
end if
end do ! i = 1, nn
! convert the primitive variables to conservative ones
!
call prim2cons(q(:,:), u(:,:))
! copy the conserved variables to the current block
!
pdata%u(:,:,j,k) = u(:,:)
! copy the primitive variables to the current block
!
pdata%q(:,:,j,k) = q(:,:)
end do ! j = 1, nn
#if NDIMS == 3
end do ! k = 1, nn
! deallocate subgrid coordinates
!
deallocate(xm, ym, zm)
deallocate(xp, yp, zp)
#endif /* NDIMS == 3 */
!-------------------------------------------------------------------------------
!
end subroutine setup_problem_sedov_taylor
!
!===============================================================================
!
! subroutine SETUP_PROBLEM_IMPLOSION:
! ----------------------------------
!
! Subroutine sets the initial conditions for the implosion problem.
!
! Arguments:
!
! pdata - pointer to the datablock structure of the currently initialized
! block;
!
!===============================================================================
!
subroutine setup_problem_implosion(pdata)
! include external procedures and variables
!
use blocks , only : block_data, ndims
use constants , only : d2r
use coordinates, only : nn => bcells
use coordinates, only : ax, ay, adx, ady
#if NDIMS == 3
use coordinates, only : az, adz
#endif /* NDIMS == 3 */
use equations , only : prim2cons
use equations , only : nv
use equations , only : idn, ivx, ivy, ivz, ipr, ibx, iby, ibz, ibp
use parameters , only : get_parameter
! local variables are not implicit by default
!
implicit none
! input arguments
!
type(block_data), pointer, intent(inout) :: pdata
! default parameter values
!
real(kind=8), save :: sline = 1.50d-01
real(kind=8), save :: adens = 1.00d+00
real(kind=8), save :: apres = 1.00d+00
real(kind=8), save :: drat = 1.25d-01
real(kind=8), save :: prat = 1.40d-01
real(kind=8), save :: buni = 1.00d+00
real(kind=8), save :: bgui = 0.00d+00
real(kind=8), save :: angle = 0.00d+00
! local saved parameters
!
logical , save :: first = .true.
real(kind=8), save :: odens = 1.25d-01
real(kind=8), save :: opres = 1.40d-01
! local variables
!
integer :: i, j, k
real(kind=8) :: rl, ru, dx, dy, dxh, dyh, ds, dl, dr
#if NDIMS == 3
real(kind=8) :: dz, dzh
#endif /* NDIMS == 3 */
real(kind=8) :: sn, cs
! local arrays
!
real(kind=8), dimension(nv,nn) :: q, u
real(kind=8), dimension(nn) :: x, xl, xu
real(kind=8), dimension(nn) :: y, yl, yu
#if NDIMS == 3
real(kind=8), dimension(nn) :: z, zl, zu
#endif /* NDIMS == 3 */
!
!-------------------------------------------------------------------------------
!
! prepare problem constants during the first subroutine call
!
if (first) then
! get problem parameters
!
call get_parameter("shock_line" , sline )
call get_parameter("ambient_density" , adens )
call get_parameter("ambient_pressure", apres )
call get_parameter("density_ratio" , drat )
call get_parameter("pressure_ratio" , prat )
call get_parameter("buni" , buni )
call get_parameter("bgui" , bgui )
call get_parameter("angle" , angle )
! calculate parameters
!
odens = drat * adens
opres = prat * apres
! reset the first execution flag
!
first = .false.
end if ! first call
! prepare block coordinates
!
x(:) = pdata%meta%xmin + ax(pdata%meta%level,:)
y(:) = pdata%meta%ymin + ay(pdata%meta%level,:)
#if NDIMS == 3
z(:) = pdata%meta%zmin + az(pdata%meta%level,:)
#endif /* NDIMS == 3 */
! calculate mesh intervals and areas
!
dx = adx(pdata%meta%level)
dy = ady(pdata%meta%level)
#if NDIMS == 3
dz = adz(pdata%meta%level)
#endif /* NDIMS == 3 */
dxh = 0.5d+00 * dx
dyh = 0.5d+00 * dy
#if NDIMS == 3
dzh = 0.5d+00 * dz
#endif /* NDIMS == 3 */
! calculate edge coordinates
!
xl(:) = abs(x(:)) - dxh
xu(:) = abs(x(:)) + dxh
yl(:) = abs(y(:)) - dyh
yu(:) = abs(y(:)) + dyh
#if NDIMS == 3
zl(:) = abs(z(:)) - dzh
zu(:) = abs(z(:)) + dzh
#endif /* NDIMS == 3 */
! reset velocity components
!
q(ivx,:) = 0.0d+00
q(ivy,:) = 0.0d+00
q(ivz,:) = 0.0d+00
! if magnetic field is present, set it to be uniform with the desired strength
! and orientation
!
if (ibx > 0) then
! calculate the orientation angles
!
sn = sin(d2r * angle)
cs = sqrt(1.0d+00 - sn * sn)
! set magnetic field components
!
q(ibx,:) = buni * cs
q(iby,:) = buni * sn
q(ibz,:) = bgui
q(ibp,:) = 0.0d+00
end if
! iterate over all positions
!
#if NDIMS == 2
k = 1
#endif /* NDIMS == 2 */
#if NDIMS == 3
do k = 1, nn
#endif /* NDIMS == 3 */
do j = 1, nn
do i = 1, nn
! calculate the distance from the origin
!
#if NDIMS == 3
rl = xl(i) + yl(j) + zl(k)
ru = xu(i) + yu(j) + zu(k)
#else /* NDIMS == 3 */
rl = xl(i) + yl(j)
ru = xu(i) + yu(j)
#endif /* NDIMS == 3 */
! initialize density and pressure
!
if (ru <= sline) then
q(idn,i) = odens
if (ipr > 0) q(ipr,i) = opres
else if (rl >= sline) then
q(idn,i) = adens
if (ipr > 0) q(ipr,i) = apres
else
ds = (sline - rl) / dx
if (ds <= 1.0d+00) then
dl = 5.0d-01 * ds**ndims
dr = 1.0d+00 - dl
else
ds = (ru - sline) / dx
dr = 5.0d-01 * ds**ndims
dl = 1.0d+00 - dr
end if
q(idn,i) = adens * dl + odens * dr
if (ipr > 0) q(ipr,i) = apres * dl + opres * dr
end if
end do ! i = 1, im
! convert the primitive variables to conservative ones
!
call prim2cons(q(:,:), u(:,:))
! copy the conserved variables to the current block
!
pdata%u(:,:,j,k) = u(:,:)
! copy the primitive variables to the current block
!
pdata%q(:,:,j,k) = q(:,:)
end do ! j = 1, nn
#if NDIMS == 3
end do ! k = 1, nn
#endif /* NDIMS == 3 */
!-------------------------------------------------------------------------------
!
end subroutine setup_problem_implosion
!
!===============================================================================
!
! subroutine SETUP_PROBLEM_KELVIN_HELMHOLTZ:
! -----------------------------------------
!
! Subroutine sets the initial conditions for the Kelvin-Helmholtz instability
! problem.
!
! Arguments:
!
! pdata - pointer to the datablock structure of the currently initialized
! block;
!
!===============================================================================
!
subroutine setup_problem_kelvin_helmholtz(pdata)
! include external procedures and variables
!
use blocks , only : block_data
use constants , only : d2r
use coordinates, only : nn => bcells
use coordinates, only : ay, ady
use equations , only : prim2cons
use equations , only : nv
use equations , only : idn, ivx, ivy, ivz, ipr, ibx, iby, ibz, ibp, isl
use parameters , only : get_parameter
use random , only : randsym
! local variables are not implicit by default
!
implicit none
! input arguments
!
type(block_data), pointer, intent(inout) :: pdata
! default parameter values
!
real(kind=8), save :: ycut = 2.50d-01
real(kind=8), save :: dens = 1.00d+00
real(kind=8), save :: drat = 2.00d+00
real(kind=8), save :: pres = 2.50d+00
real(kind=8), save :: vamp = 1.00d+00
real(kind=8), save :: vper = 1.00d-02
real(kind=8), save :: buni = 1.00d+00
real(kind=8), save :: bgui = 0.00d+00
real(kind=8), save :: angle = 0.00d+00
! local saved parameters
!
logical , save :: first = .true.
! local variables
!
integer :: i, j, k
real(kind=8) :: yl, yu, dy, dyh
real(kind=8) :: sn, cs
! local arrays
!
real(kind=8), dimension(nv,nn) :: q, u
real(kind=8), dimension(nn) :: y
!
!-------------------------------------------------------------------------------
!
! prepare problem constants during the first subroutine call
!
if (first) then
! get problem parameters
!
call get_parameter("ycut" , ycut )
call get_parameter("dens" , dens )
call get_parameter("drat" , drat )
call get_parameter("pres" , pres )
call get_parameter("vamp" , vamp )
call get_parameter("vper" , vper )
call get_parameter("buni" , buni )
call get_parameter("bgui" , bgui )
call get_parameter("angle" , angle )
! reset the first execution flag
!
first = .false.
end if ! first call
! prepare block coordinates
!
y(:) = pdata%meta%ymin + ay(pdata%meta%level,:)
! calculate mesh intervals and areas
!
dy = ady(pdata%meta%level)
dyh = 0.5d+00 * dy
! set the ambient density and pressure
!
q(idn,:) = dens
if (ipr > 0) q(ipr,:) = pres
! if magnetic field is present, set it to be uniform with the desired strength
! and orientation
!
if (ibx > 0) then
! calculate the orientation angles
!
sn = sin(d2r * angle)
cs = sqrt(1.0d+00 - sn * sn)
! set magnetic field components
!
q(ibx,:) = buni * cs
q(iby,:) = buni * sn
q(ibz,:) = bgui
q(ibp,:) = 0.0d+00
end if
! iterate over all positions in the YZ plane
!
#if NDIMS == 2
k = 1
#endif /* NDIMS == 2 */
#if NDIMS == 3
do k = 1, nn
#endif /* NDIMS == 3 */
do j = 1, nn
! calculate the corner Y coordinates
!
yl = abs(y(j)) - dyh
yu = abs(y(j)) + dyh
! set the primitive variables for two regions
!
if (yu <= ycut) then
q(idn,:) = dens * drat
q(ivx,:) = vamp
if (isl > 0) q(isl,:) = 1.0d+00
else if (yl >= ycut) then
q(idn,:) = dens
q(ivx,:) = - vamp
if (isl > 0) q(isl,:) = 0.0d+00
else
q(idn,:) = dens * ((yu - ycut) * drat + (ycut - yl)) / dy
q(ivx,:) = vamp * ((yu - ycut) - (ycut - yl)) / dy
if (isl > 0) q(isl,:) = (yu - ycut) / dy
end if
! reset remaining velocity components
!
q(ivy,:) = 0.0d+00
q(ivz,:) = 0.0d+00
! set the pressure
!
if (ipr > 0) q(ipr,:) = pres
! add a random seed velocity component
!
do i = 1, nn
q(ivx,i) = q(ivx,i) + vper * randsym()
q(ivy,i) = q(ivy,i) + vper * randsym()
#if NDIMS == 3
q(ivz,i) = q(ivz,i) + vper * randsym()
#endif /* NDIMS == 3 */
end do
! convert the primitive variables to conservative ones
!
call prim2cons(q(:,:), u(:,:), .true.)
! copy the conserved variables to the current block
!
pdata%u(:,:,j,k) = u(:,:)
! copy the primitive variables to the current block
!
pdata%q(:,:,j,k) = q(:,:)
end do ! j = 1, nn
#if NDIMS == 3
end do ! k = 1, nn
#endif /* NDIMS == 3 */
!-------------------------------------------------------------------------------
!
end subroutine setup_problem_kelvin_helmholtz
!
!===============================================================================
!
! subroutine SETUP_PROBLEM_RAYLEIGH_TAYLOR:
! ----------------------------------------
!
! Subroutine sets the initial conditions for the Rayleigh-Taylor instability
! problem.
!
! Arguments:
!
! pdata - pointer to the datablock structure of the currently initialized
! block;
!
! References:
!
! [1] Almgren, A. S. et al.,
! "CASTRO: A New Compressible Astrophysical Solver.
! I. Hydrodynamics and Self-Gravity",
! The Astrophysical Journal, 2010, vol. 715, pp. 1221-1238,
! http://dx.doi.org/10.1088/0004-637X/715/2/1221
!
!===============================================================================
!
subroutine setup_problem_rayleigh_taylor(pdata)
! include external procedures and variables
!
use blocks , only : block_data
use constants , only : pi2, d2r
use coordinates, only : xmin, xmax, xlen
use coordinates, only : nn => bcells
use coordinates, only : ax, ay
use equations , only : prim2cons
use equations , only : nv
use equations , only : idn, ivx, ivy, ivz, ipr, ibx, iby, ibz, ibp, isl
use equations , only : csnd2
use parameters , only : get_parameter
use random , only : randsym
! local variables are not implicit by default
!
implicit none
! input arguments
!
type(block_data), pointer, intent(inout) :: pdata
! default parameter values
!
real(kind=8), save :: dens = 1.00d+00
real(kind=8), save :: drat = 2.00d+00
real(kind=8), save :: damp = 5.00d-01
real(kind=8), save :: pres = 5.00d+00
real(kind=8), save :: ycut = 0.00d+00
real(kind=8), save :: vper = 0.00d+00
real(kind=8), save :: lper = 1.00d-02
real(kind=8), save :: kper = 1.00d+00
real(kind=8), save :: hdel = 5.00d-03
real(kind=8), save :: gacc = -1.00d+00
real(kind=8), save :: buni = 1.00d+00
real(kind=8), save :: bgui = 0.00d+00
real(kind=8), save :: angle = 0.00d+00
! local saved parameters
!
logical , save :: first = .true.
! local variables
!
integer :: i, j, k
real(kind=8) :: sn, cs
! local arrays
!
real(kind=8), dimension(nv,nn) :: q, u
real(kind=8), dimension(nn) :: x, y, yp
!
!-------------------------------------------------------------------------------
!
! prepare problem constants during the first subroutine call
!
if (first) then
! get problem parameters
!
call get_parameter("ycut" , ycut )
call get_parameter("dens" , dens )
call get_parameter("drat" , drat )
call get_parameter("pres" , pres )
call get_parameter("lper" , lper )
call get_parameter("kper" , kper )
call get_parameter("vper" , vper )
call get_parameter("hdel" , hdel )
call get_parameter("gacc" , gacc )
call get_parameter("buni" , buni )
call get_parameter("bgui" , bgui )
call get_parameter("angle" , angle )
! calculate the density change across the interface
!
damp = 5.0d-01 * (drat * dens - dens)
! reset the first execution flag
!
first = .false.
end if ! first call
! prepare block coordinates
!
x(:) = pdata%meta%xmin + ax(pdata%meta%level,:)
y(:) = pdata%meta%ymin + ay(pdata%meta%level,:)
! set the ambient density and pressure
!
q(idn,:) = dens
if (ipr > 0) q(ipr,:) = pres
! if magnetic field is present, set it to be uniform with the desired strength
! and orientation
!
if (ibx > 0) then
! calculate the orientation angles
!
sn = sin(d2r * angle)
cs = sqrt(1.0d+00 - sn * sn)
! set magnetic field components
!
q(ibx,:) = buni * cs
q(iby,:) = buni * sn
q(ibz,:) = bgui
q(ibp,:) = 0.0d+00
end if
! prepare density perturbation
!
yp(:) = 0.5d+00 * lper * (cos(pi2 * kper * (x(:) - xmin) / xlen) &
+ cos(pi2 * kper * (xmax - x(:)) / xlen)) + ycut
! iterate over all positions in the YZ plane
!
#if NDIMS == 2
k = 1
#endif /* NDIMS == 2 */
#if NDIMS == 3
do k = 1, nn
#endif /* NDIMS == 3 */
do j = 1, nn
! set density and pressure
!
if (ipr > 0) then
if (y(j) <= ycut) then
q(idn,:) = dens
else
q(idn,:) = dens * drat
end if
q(idn,:) = dens + damp * (1.0d+00 + tanh((y(j) - yp(:)) / hdel))
q(ipr,:) = pres + q(idn,:) * gacc * y(j)
else
if (y(j) <= ycut) then
q(idn,:) = dens * exp(gacc * y(j) / csnd2)
else
q(idn,:) = dens * drat * exp(gacc * y(j) / csnd2)
end if
end if
if (isl > 0) then
if (y(j) <= ycut) then
q(isl,:) = 0.0d+00
else
q(isl,:) = 1.0d+00
end if
end if
! reset the velocity components
!
q(ivx,:) = 0.0d+00
q(ivy,:) = 0.0d+00
q(ivz,:) = 0.0d+00
! add a random seed velocity component
!
if (abs(vper) > 0.0d+00) then
do i = 1, nn
q(ivy,i) = q(ivy,i) + vper * randsym()
end do
end if
! convert the primitive variables to conservative ones
!
call prim2cons(q(:,:), u(:,:), .true.)
! copy the conserved variables to the current block
!
pdata%u(:,:,j,k) = u(:,:)
! copy the primitive variables to the current block
!
pdata%q(:,:,j,k) = q(:,:)
end do ! j = 1, nn
#if NDIMS == 3
end do ! k = 1, nn
#endif /* NDIMS == 3 */
!-------------------------------------------------------------------------------
!
end subroutine setup_problem_rayleigh_taylor
!
!===============================================================================
!
! subroutine SETUP_PROBLEM_ORSZAG_TANG:
! ------------------------------------
!
! Subroutine sets the initial conditions for the Orszag-Tang test
! problem.
!
! Arguments:
!
! pdata - pointer to the datablock structure of the currently initialized
! block;
!
! References:
!
! [1] Orszag, S. A., Tang, C. -M.,
! "Small-scale structure of two-dimensional magnetohydrodynamic
! turbulence",
! Journal of Fluid Mechanics, 1979, 90, pp. 129-143,
! https://doi.org/10.1017/S002211207900210X
! [2] Mignone, A.,
! "A simple and accurate Riemann solver for isothermal MHD",
! Journal of Computational Physics, 2007, 225, pp. 1427-1441,
! https://doi.org/10.1016/j.jcp.2007.01.033
!
!===============================================================================
!
subroutine setup_problem_orszag_tang(pdata)
use blocks , only : block_data
use constants , only : pi2
use coordinates, only : nn => bcells, ax, ay
use equations , only : idn, ivx, ivy, ivz, ipr, ibx, iby, ibz, ibp
use equations , only : nv, magnetized, csnd, adiabatic_index
use equations , only : prim2cons
use helpers , only : print_message
use parameters , only : get_parameter
implicit none
type(block_data), pointer, intent(inout) :: pdata
real(kind=8), save :: dens = 1.00d+00
real(kind=8), save :: pres = 1.00d+00
real(kind=8), save :: vamp = 1.00d+00
real(kind=8), save :: bamp = 1.00d+00
real(kind=8), save :: bgui = 0.00d+00
logical, save :: first = .true.
integer :: j, k
real(kind=8), dimension(nv,nn) :: q, u
real(kind=8), dimension(nn) :: x, y
character(len=*), parameter :: loc = 'PROBLEMS::setup_problem_orszag_tang()'
!-------------------------------------------------------------------------------
!
if (first) then
call get_parameter("dens", dens)
call get_parameter("vamp", vamp)
call get_parameter("bamp", bamp)
call get_parameter("bgui", bgui)
if (ipr > 0) then
pres = dens / adiabatic_index
bamp = bamp / adiabatic_index
else
vamp = csnd * vamp
bamp = csnd * bamp
end if
first = .false.
end if
x(:) = pdata%meta%xmin + ax(pdata%meta%level,:)
y(:) = pdata%meta%ymin + ay(pdata%meta%level,:)
q(idn,:) = dens
if (ipr > 0) q(ipr,:) = pres
q(ivy,:) = - vamp * sin(pi2 * x(:))
q(ivz,:) = 0.0d+00
if (magnetized) then
q(iby,:) = bamp * sin(pi2 * x(:) * 2.0d+00)
q(ibz,:) = bgui
q(ibp,:) = 0.0d+00
#if NDIMS == 2
k = 1
#endif /* NDIMS == 2 */
#if NDIMS == 3
do k = 1, nn
#endif /* NDIMS == 3 */
do j = 1, nn
q(ivx,:) = vamp * sin(pi2 * y(j))
q(ibx,:) = bamp * sin(pi2 * y(j))
call prim2cons(q(:,:), u(:,:), .true.)
pdata%u(:,:,j,k) = u(:,:)
pdata%q(:,:,j,k) = q(:,:)
end do
#if NDIMS == 3
end do
#endif /* NDIMS == 3 */
else
call print_message(loc, "Orszag-Tang problem requires MHD!")
end if
!-------------------------------------------------------------------------------
!
end subroutine setup_problem_orszag_tang
!
!===============================================================================
!
! subroutine SETUP_PROBLEM_CURRENT_SHEET:
! --------------------------------------
!
! Subroutine sets the initial conditions for the current sheet test problem.
!
! Arguments:
!
! pdata - pointer to the datablock structure of the currently initialized
! block;
!
!===============================================================================
!
subroutine setup_problem_current_sheet(pdata)
! include external procedures and variables
!
use blocks , only : block_data
use constants , only : pi2
use coordinates, only : nn => bcells
use coordinates, only : ax, ay
use equations , only : prim2cons
use equations , only : nv, magnetized
use equations , only : idn, ivx, ivy, ivz, ipr, ibx, iby, ibz, ibp
use parameters , only : get_parameter
! local variables are not implicit by default
!
implicit none
! input arguments
!
type(block_data), pointer, intent(inout) :: pdata
! default parameter values
!
real(kind=8), save :: xpos = 2.50d-01
real(kind=8), save :: xdel = 1.00d-08
real(kind=8), save :: dens = 1.00d+00
real(kind=8), save :: beta = 1.00d-01
real(kind=8), save :: vamp = 1.00d-01
real(kind=8), save :: bamp = 1.00d+00
real(kind=8), save :: bgui = 0.00d+00
! local saved parameters
!
logical, save :: first = .true.
! local variables
!
integer :: i, j, k
real(kind=8) :: t
! local arrays
!
real(kind=8), dimension(nv,nn) :: q, u
real(kind=8), dimension(nn) :: x, y, vx
!
!-------------------------------------------------------------------------------
!
! retrieve the problem parameters during the first subroutine call
!
if (first) then
call get_parameter("position" , xpos)
call get_parameter("thickness" , xdel)
call get_parameter("density" , dens)
call get_parameter("beta" , beta)
call get_parameter("vel_amplitude", vamp)
call get_parameter("mag_amplitude", bamp)
call get_parameter("mag_guide" , bgui)
first = .false.
end if
! prepare the block coordinates
!
x(:) = pdata%meta%xmin + ax(pdata%meta%level,:)
y(:) = pdata%meta%ymin + ay(pdata%meta%level,:)
! prepare the vector of velocity perturbation (varying along Y)
!
vx(:) = vamp * sin(pi2 * y(:))
! set the fields, along X, which do not vary along the YZ planes
!
q(idn,:) = dens
q(ivy,:) = 0.0d+00
q(ivz,:) = 0.0d+00
if (ipr > 0) q(ipr,:) = 0.5d+00 * beta
! if magnetic field is present, set its antiparallel configuration
!
if (magnetized) then
! set magnetic field components
!
q(ibx,:) = 0.0d+00
do i = 1, nn
t = (xpos - abs(x(i))) / xdel
q(iby,i) = sign(bamp, t) * min(abs(t), 1.0d+00)
end do
q(ibz,:) = bgui
q(ibp,:) = 0.0d+00
! correct the gas pressure due to the variance of magnetic pressure
!
if (ipr > 0) q(ipr,:) = q(ipr,:) + 0.5d+00 * (bamp**2 - q(iby,:)**2)
end if
! iterate over all positions in the YZ planes
!
#if NDIMS == 2
k = 1
#endif /* NDIMS == 2 */
#if NDIMS == 3
do k = 1, nn
#endif /* NDIMS == 3 */
do j = 1, nn
! set the velocity perturbation
!
q(ivx,:) = vx(j)
! convert the primitive variables to conservative ones
!
call prim2cons(q(:,:), u(:,:))
! copy the conserved and primitive variables to the current block
!
pdata%u(:,:,j,k) = u(:,:)
pdata%q(:,:,j,k) = q(:,:)
end do ! j = 1, nn
#if NDIMS == 3
end do ! k = 1, nn
#endif /* NDIMS == 3 */
!-------------------------------------------------------------------------------
!
end subroutine setup_problem_current_sheet
!
!===============================================================================
!
! subroutine SETUP_PROBLEM_TEARING:
! --------------------------------
!
! Subroutine sets the initial conditions for the resistive tearing instability
! test problem.
!
! Arguments:
!
! pdata - pointer to the datablock structure of the currently initialized
! block;
!
! References:
!
! [1] Lapenta, G.,
! "Self-Feeding Turbulent Magnetic Reconnection on Macroscopic Scales",
! Physical Review Letters, 2008, vol. 100, id. 235001,
! http://dx.doi.org/10.1103/PhysRevLett.100.235001
!
! [2] Landi, S., Del Zanna, L., Papini, E., Pucci, F., and Velli, M.
! "Resistive Magnetohydrodynamics Simulations of the Ideal Tearing Mode",
! The Astrophysical Journal, 2015, vol. 806, id. 131,
! http://dx.doi.org/10.1088/0004-637X/806/1/131
!
!===============================================================================
!
subroutine setup_problem_tearing(pdata)
! include external procedures and variables
!
use blocks , only : block_data
use constants , only : pi2
use coordinates, only : nn => bcells
use coordinates, only : ax, ay, adx, ady
use equations , only : prim2cons
use equations , only : nv, magnetized, csnd2
use equations , only : idn, ivx, ivy, ivz, ipr, ibx, iby, ibz, ibp
use parameters , only : get_parameter
! local variables are not implicit by default
!
implicit none
! input arguments
!
type(block_data), pointer, intent(inout) :: pdata
! default parameter values
!
real(kind=8), save :: beta = 1.00d-01
real(kind=8), save :: delta = 1.00d-08
real(kind=8), save :: eta = 1.00d-08
real(kind=8), save :: zeta = 0.00d+00
real(kind=8), save :: dens = 1.00d+00
real(kind=8), save :: pres = 5.00d-02
real(kind=8), save :: pmag = 1.00d+00
real(kind=8), save :: bamp = 1.00d+00
real(kind=8), save :: bnor = 0.00d+00
real(kind=8), save :: bgui = 0.00d+00
real(kind=8), save :: bper = 1.00d-02
real(kind=8), save :: vper = 1.00d-03
real(kind=8), save :: kper = 1.00d+00
real(kind=8), save :: ss = 1.00d+00
! local saved parameters
!
logical, save :: first = .true.
! local variables
!
integer :: i, j, k
real(kind=8) :: dx, dy, t
! local arrays
!
real(kind=8), dimension(nv,nn) :: q, u
real(kind=8), dimension(nn) :: xc, xl, xu, yl, yu, xi
real(kind=8), dimension(nn) :: vx, vy, bx, by, b0
!
!-------------------------------------------------------------------------------
!
! retrieve the problem parameters during the first subroutine call
!
if (first) then
call get_parameter("resistivity", eta)
call get_parameter("beta" , beta)
call get_parameter("zeta" , zeta)
call get_parameter("density" , dens)
call get_parameter("bamp" , bamp)
call get_parameter("bnor" , bnor)
call get_parameter("bgui" , bgui)
call get_parameter("bper" , bper)
call get_parameter("vper" , vper)
call get_parameter("kper" , kper)
ss = abs(bamp) / (sqrt(dens) * max(1.0d-16, eta))
delta = ss**(-1.0d+00/3.0d+00)
if (abs(bper) > 0.0d+00) vper = 0.0d+00
pres = 0.5d+00 * beta
pmag = 0.5d+00 * (bamp**2 + bnor**2 + bgui**2)
first = .false.
end if
! prepare the block coordinates
!
dx = adx(pdata%meta%level)
dy = ady(pdata%meta%level)
xc(:) = pdata%meta%xmin + ax(pdata%meta%level,:)
xl(:) = pdata%meta%xmin + ax(pdata%meta%level,:) - 0.5d+00 * dx
xu(:) = xl(:) + dx
yl(:) = pdata%meta%ymin + ay(pdata%meta%level,:) - 0.5d+00 * dy
yu(:) = yl(:) + dy
! prepare the vector of velocity perturbation (varying along Y)
!
if (abs(vper) > 0.0d+00) then
xi(:) = xc(:) * sqrt(ss)
vx(:) = vper * tanh(xi(:)) * exp(- xi(:)**2)
vy(:) = vper * (2.0d+00 * xi(:) * tanh(xi(:)) - 1.0d+00 / cosh(xi(:))**2)&
* exp(- xi(:)**2) * sqrt(ss) / (pi2 * kper)
end if
if (abs(bper) > 0.0d+00) then
bx(:) = bper * (sin(pi2 * xl(:)) - sin(pi2 * xu(:))) / (pi2 * dx)
by(:) = bper * (cos(pi2 * xl(:)) - cos(pi2 * xu(:))) / (pi2 * dx * kper)
end if
! set the fields, along X, which do not vary along the YZ planes
!
q(idn,:) = dens
q(ivx,:) = 0.0d+00
q(ivy,:) = 0.0d+00
q(ivz,:) = 0.0d+00
if (ipr > 0) q(ipr,:) = pres
! if magnetic field is present, set its antiparallel configuration
!
if (magnetized) then
! set magnetic field components
!
q(ibx,:) = bnor
do i = 1, nn
t = delta * (log(cosh(xu(i) / delta)) &
- log(cosh(xl(i) / delta))) / dx
q(iby,i) = bamp * max(-1.0d+00, min(1.0d+00, t))
q(ibz,i) = zeta * sqrt(bamp**2 - q(iby,i)**2) + bgui
end do
q(ibp,:) = 0.0d+00
b0(:) = q(iby,:)
! correct the gas pressure due to the variance of magnetic pressure
!
if (ipr > 0) then
q(ipr,:) = pres + pmag - 0.5d+00 * sum(q(ibx:ibz,:)**2,1)
else
q(idn,:) = (pres + pmag - 0.5d+00 * sum(q(ibx:ibz,:)**2,1)) / csnd2
end if
end if
! iterate over all positions in the YZ planes
!
#if NDIMS == 2
k = 1
#endif /* NDIMS == 2 */
#if NDIMS == 3
do k = 1, nn
#endif /* NDIMS == 3 */
do j = 1, nn
! set the perturbation
!
if (abs(vper) > 0.0d+00) then
q(ivx,:) = vx(:) * (sin(pi2 * kper * yl(j)) &
- sin(pi2 * kper * yu(j))) / (pi2 * kper * dy)
q(ivy,:) = vy(:) * (cos(pi2 * kper * yu(j)) &
- cos(pi2 * kper * yl(j))) / (pi2 * kper * dy)
end if
if (abs(bper) > 0.0d+00) then
q(ibx,:) = bx(:) * (cos(pi2 * kper * yu(j)) &
- cos(pi2 * kper * yl(j))) / (pi2 * kper * dy) &
+ bnor
q(iby,:) = by(:) * (sin(pi2 * kper * yl(j)) &
- sin(pi2 * kper * yu(j))) / (pi2 * kper * dy) &
+ b0(:)
end if
! convert the primitive variables to conservative ones
!
call prim2cons(q(:,:), u(:,:))
! copy the conserved and primitive variables to the current block
!
pdata%u(:,:,j,k) = u(:,:)
pdata%q(:,:,j,k) = q(:,:)
end do ! j = 1, nn
#if NDIMS == 3
end do ! k = 1, nn
#endif /* NDIMS == 3 */
!-------------------------------------------------------------------------------
!
end subroutine setup_problem_tearing
!
!===============================================================================
!
! subroutine SETUP_PROBLEM_TURBULENCE:
! -----------------------------------
!
! Subroutine sets the initial conditions for the turbulence problem.
!
! Arguments:
!
! pdata - pointer to the datablock structure of the currently initialized
! block;
!
!===============================================================================
!
subroutine setup_problem_turbulence(pdata)
use blocks , only : block_data
use coordinates, only : nn => bcells
use equations , only : nv, magnetized, adiabatic_index, csnd2
use equations , only : idn, ivx, ivy, ivz, ipr, ibx, iby, ibz, ibp
use equations , only : prim2cons
use parameters , only : get_parameter
implicit none
type(block_data), pointer, intent(inout) :: pdata
real(kind=8), save :: beta = 1.00d+00
real(kind=8), save :: dens = 1.00d+00
real(kind=8), save :: bamp = 1.00d+00
real(kind=8), save :: bgui = 0.00d+00
real(kind=8), save :: pres = 5.00d-02
real(kind=8), save :: pmag = 1.00d+00
logical, save :: first = .true.
integer :: j, k
real(kind=8), dimension(nv,nn) :: q, u
!-------------------------------------------------------------------------------
!
if (first) then
call get_parameter("density", dens)
pres = csnd2 * dens
if (ipr > 0) pres = pres / adiabatic_index
if (magnetized) then
call get_parameter("bamp", bamp)
call get_parameter("bgui", bgui)
pmag = 0.5d+00 * (bamp**2 + bgui**2)
beta = pres / pmag
end if
first = .false.
end if
q(idn,:) = dens
q(ivx,:) = 0.0d+00
q(ivy,:) = 0.0d+00
q(ivz,:) = 0.0d+00
if (ipr > 0) q(ipr,:) = pres
if (magnetized) then
q(ibx,:) = bamp
q(iby,:) = 0.0d+00
q(ibz,:) = bgui
q(ibp,:) = 0.0d+00
end if
call prim2cons(q(:,:), u(:,:))
#if NDIMS == 2
k = 1
#endif /* NDIMS == 2 */
#if NDIMS == 3
do k = 1, nn
#endif /* NDIMS == 3 */
do j = 1, nn
pdata%u(:,:,j,k) = u(:,:)
pdata%q(:,:,j,k) = q(:,:)
end do
#if NDIMS == 3
end do
#endif /* NDIMS == 3 */
!-------------------------------------------------------------------------------
!
end subroutine setup_problem_turbulence
!
!===============================================================================
!
! subroutine SETUP_PROBLEM_WIND:
! -----------------------------
!
! Subroutine sets the initial conditions for the stellar wind problem.
!
! Arguments:
!
! pdata - pointer to the datablock structure of the currently initialized
! block;
!
!===============================================================================
!
subroutine setup_problem_wind(pdata)
use blocks , only : block_data
use coordinates, only : nn => bcells
use coordinates, only : ax, ay
#if NDIMS == 3
use coordinates, only : az
#endif /* NDIMS == 3 */
use equations , only : nv, magnetized, adiabatic_index, csnd, csnd2
use equations , only : idn, ivx, ivy, ivz, ipr, ibx, iby, ibz, ibp
use equations , only : prim2cons
use parameters , only : get_parameter
implicit none
type(block_data), pointer, intent(inout) :: pdata
real(kind=8), save :: radius = 1.00d-01
real(kind=8), save :: dens = 1.00d+06
real(kind=8), save :: sonic = 3.00d+00
real(kind=8), save :: wind = 5.00d-01
real(kind=8), save :: pres = 5.00d-02
real(kind=8), save :: bamp = 1.00d-03
logical, save :: first = .true.
integer :: i, j, k
real(kind=8) :: r, r2, s, w
real(kind=8), dimension(nv,nn) :: q, u
real(kind=8), dimension(nn) :: x, y
#if NDIMS == 3
real(kind=8), dimension(nn) :: z
#endif /* NDIMS == 3 */
!-------------------------------------------------------------------------------
!
if (first) then
call get_parameter("radius" , radius)
call get_parameter("density" , dens )
call get_parameter("sonic" , sonic )
call get_parameter("wind_speed", wind )
if (ipr > 0) then
pres = (wind / sonic)**2 * dens / adiabatic_index
else
csnd = wind / sonic
csnd2 = csnd * csnd
end if
if (magnetized) &
call get_parameter("bamp", bamp)
first = .false.
end if
x(:) = pdata%meta%xmin + ax(pdata%meta%level,:)
y(:) = pdata%meta%ymin + ay(pdata%meta%level,:)
#if NDIMS == 3
z(:) = pdata%meta%zmin + az(pdata%meta%level,:)
#endif /* NDIMS == 3 */
#if NDIMS == 3
do k = 1, nn
#else /* NDIMS == 3 */
k = 1
#endif /* NDIMS == 3 */
do j = 1, nn
do i = 1, nn
#if NDIMS == 3
r2 = x(i)**2 + y(j)**2 + z(k)**2
#else /* NDIMS == 3 */
r2 = x(i)**2 + y(j)**2
#endif /* NDIMS == 3 */
r = max(sqrt(r2), 1.0d-16)
s = max(1.0d+00, r / radius)**(NDIMS - 1)
q(idn,i) = dens / s
if (ipr > 0) q(ipr,i) = pres / s**adiabatic_index
q(ivx,i) = wind * x(i) / r
q(ivy,i) = wind * y(j) / r
#if NDIMS == 3
q(ivz,i) = wind * z(k) / r
#else /* NDIMS == 3 */
q(ivz,i) = 0.0d+00
#endif /* NDIMS == 3 */
if (magnetized) then
w = max(1.0d+00, r / radius)**(5.0d-1 * NDIMS)
q(ibx,i) = 0.0d+00
q(iby,i) = 0.0d+00
q(ibz,i) = bamp / w
q(ibp,i) = 0.0d+00
end if
end do
call prim2cons(q(:,:), u(:,:))
pdata%q(:,:,j,k) = q(:,:)
pdata%u(:,:,j,k) = u(:,:)
end do
#if NDIMS == 3
end do
#endif /* NDIMS == 3 */
!-------------------------------------------------------------------------------
!
end subroutine setup_problem_wind
!===============================================================================
!
end module problems