!!****************************************************************************** !! !! This file is part of the AMUN source code, a program to perform !! Newtonian or relativistic magnetohydrodynamical simulations on uniform or !! adaptive mesh. !! !! Copyright (C) 2008-2014 Grzegorz Kowal !! !! This program is free software: you can redistribute it and/or modify !! it under the terms of the GNU General Public License as published by !! the Free Software Foundation, either version 3 of the License, or !! (at your option) any later version. !! !! This program is distributed in the hope that it will be useful, !! but WITHOUT ANY WARRANTY; without even the implied warranty of !! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the !! GNU General Public License for more details. !! !! You should have received a copy of the GNU General Public License !! along with this program. If not, see . !! !!****************************************************************************** !! !! module: COORDINATES !! !! This module provides variables and subroutines handling the coordinates !! for all refinement levels. !! !!****************************************************************************** ! module coordinates ! module variables are not implicit by default ! implicit none ! MODULE PARAMETERS: ! ================= ! ! the domain block dimensions ! integer , save :: nc = 8, in = 8, jn = 8, kn = 1 ! the number of ghost zones ! integer , save :: ng = 2, nh = 1, nd = 4 ! the domain block dimensions including the ghost zones ! integer , save :: im = 12, jm = 12, km = 1 ! the domain block dimensions including the ghost zones ! integer , save :: it = 11, jt = 11, kt = 1 ! the domain division ! integer , save :: ir = 1, jr = 1, kr = 1 ! the limits of refinement level ! integer , save :: minlev = 1, maxlev = 1, toplev = 1 ! block indices ! integer , save :: ih = 6, jh = 6, kh = 1 integer , save :: ib = 3, jb = 3, kb = 1 integer , save :: ie = 10, je = 10, ke = 1 integer , save :: ibl = 2, jbl = 2, kbl = 1 integer , save :: ibu = 4, jbu = 4, kbu = 1 integer , save :: iel = 9, jel = 9, kel = 1 integer , save :: ieu = 11, jeu = 11, keu = 1 ! the domain bounds ! real(kind=8), save :: xmin = 0.0d+00 real(kind=8), save :: xmax = 1.0d+00 real(kind=8), save :: xlen = 1.0d+00 real(kind=8), save :: ymin = 0.0d+00 real(kind=8), save :: ymax = 1.0d+00 real(kind=8), save :: ylen = 1.0d+00 real(kind=8), save :: zmin = 0.0d+00 real(kind=8), save :: zmax = 1.0d+00 real(kind=8), save :: zlen = 1.0d+00 ! the domain volume and its inversion ! real(kind=8), save :: vol = 1.0d+00 real(kind=8), save :: voli = 1.0d+00 ! the domain boundary areas ! real(kind=8), save :: xarea = 1.0d+00 real(kind=8), save :: yarea = 1.0d+00 real(kind=8), save :: zarea = 1.0d+00 ! the block coordinates for all levels of refinement ! real(kind=8), dimension(:,:), allocatable, save :: ax , ay , az real(kind=8), dimension(: ), allocatable, save :: adx , ady , adz, adr real(kind=8), dimension(: ), allocatable, save :: adxi, adyi, adzi real(kind=8), dimension(: ), allocatable, save :: advol ! define type for rectangular subarray description ! type rectangular integer, dimension(NDIMS) :: l ! indices of the lower corner integer, dimension(NDIMS) :: u ! indices of the upper corner end type rectangular ! the subarray indices to ghost and domain areas used for boundary exchange ! ('c' for copy, 'p' for prolongation, 'r' for restriction) ! #if NDIMS == 2 type(rectangular), dimension(2,2,NDIMS) , save :: edges_dc , edges_gc type(rectangular), dimension(2,2,NDIMS) , save :: edges_dp , edges_gp type(rectangular), dimension(2,2,NDIMS) , save :: edges_dr , edges_gr type(rectangular), dimension(2,2) , save :: corners_dc, corners_gc type(rectangular), dimension(2,2) , save :: corners_dp, corners_gp type(rectangular), dimension(2,2) , save :: corners_dr, corners_gr #endif /* NDIMS == 2 */ #if NDIMS == 3 type(rectangular), dimension(2,2,2,NDIMS), save :: faces_dc , faces_gc type(rectangular), dimension(2,2,2,NDIMS), save :: faces_dp , faces_gp type(rectangular), dimension(2,2,2,NDIMS), save :: faces_dr , faces_gr type(rectangular), dimension(2,2,2,NDIMS), save :: edges_dc , edges_gc type(rectangular), dimension(2,2,2,NDIMS), save :: edges_dp , edges_gp type(rectangular), dimension(2,2,2,NDIMS), save :: edges_dr , edges_gr type(rectangular), dimension(2,2,2) , save :: corners_dc, corners_gc type(rectangular), dimension(2,2,2) , save :: corners_dp, corners_gp type(rectangular), dimension(2,2,2) , save :: corners_dr, corners_gr #endif /* NDIMS == 3 */ ! by default everything is private ! public !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! contains ! !=============================================================================== ! ! subroutine INITIALIZE_COORDINATES: ! --------------------------------- ! ! Subroutine initializes mesh coordinates and other coordinate parameters. ! ! Arguments: ! ! verbose - flag determining if the subroutine should be verbose; ! iret - return flag of the procedure execution status; ! !=============================================================================== ! subroutine initialize_coordinates(verbose, iret) ! include external procedures ! use parameters, only : get_parameter_integer, get_parameter_real ! local variables are not implicit by default ! implicit none ! subroutine arguments ! logical, intent(in) :: verbose integer, intent(inout) :: iret ! local variables ! integer :: i, j, k, l, p, q, r, ff integer :: fi, fj, fk integer :: ni, nj, nk, nm, np, nr, ns logical :: info ! local arrays ! integer(kind=4), dimension(3) :: cm, rm, dm ! !------------------------------------------------------------------------------- ! ! obtain the number of cells along each block dimension ! call get_parameter_integer("ncells" , nc ) ! obtain the number of ghost zones ! call get_parameter_integer("nghosts", ng ) ! set the block dimensions ! in = nc jn = nc #if NDIMS == 3 kn = nc #endif /* NDIMS == 3 */ ! calculate half and double of the number of ghose zones ! nh = ng / 2 nd = ng * 2 ! calculate the block dimensions including ghost cells ! im = in + 2 * ng jm = jn + 2 * ng #if NDIMS == 3 km = kn + 2 * ng #endif /* NDIMS == 3 */ ! prepare indices ! it = im - nh + 1 jt = jm - nh + 1 #if NDIMS == 3 kt = km - nh + 1 #endif /* NDIMS == 3 */ ! calculate block indices ! ih = im / 2 ib = ng + 1 ie = ng + in ibl = ib - 1 ibu = ib + ng - 1 iel = ie - ng + 1 ieu = ie + 1 jh = jm / 2 jb = ng + 1 je = ng + jn jbl = jb - 1 jbu = jb + ng - 1 jel = je - ng + 1 jeu = je + 1 #if NDIMS == 3 kh = km / 2 kb = ng + 1 ke = ng + kn kbl = kb - 1 kbu = kb + ng - 1 kel = ke - ng + 1 keu = ke + 1 #endif /* NDIMS == 3 */ ! obtain the refinement level bounds ! call get_parameter_integer("minlev", minlev) call get_parameter_integer("maxlev", maxlev) ! set the top level ! toplev = maxlev ! obtain the domain base division ! call get_parameter_integer("rdimx" , ir ) call get_parameter_integer("rdimy" , jr ) #if NDIMS == 3 call get_parameter_integer("rdimz" , kr ) #endif /* NDIMS == 3 */ ! obtain the domain bounds ! call get_parameter_real ("xmin" , xmin ) call get_parameter_real ("xmax" , xmax ) call get_parameter_real ("ymin" , ymin ) call get_parameter_real ("ymax" , ymax ) #if NDIMS == 3 call get_parameter_real ("zmin" , zmin ) call get_parameter_real ("zmax" , zmax ) #endif /* NDIMS == 3 */ ! calculate the domain sizes ! xlen = xmax - xmin ylen = ymax - ymin #if NDIMS == 3 zlen = zmax - zmin #endif /* NDIMS == 3 */ ! calculate the domain volume ! vol = xlen * ylen * zlen voli = 1.0d+00 / vol ! calculate the boundary areas ! xarea = ylen * zlen yarea = xlen * zlen zarea = xlen * ylen ! allocate space for coordinate variables ! allocate(ax (toplev, im)) allocate(ay (toplev, jm)) allocate(az (toplev, km)) allocate(adx (toplev)) allocate(ady (toplev)) allocate(adz (toplev)) allocate(adr (toplev)) allocate(adxi (toplev)) allocate(adyi (toplev)) allocate(adzi (toplev)) allocate(advol(toplev)) ! reset all coordinate variables to initial values ! ax (:,:) = 0.0d+00 ay (:,:) = 0.0d+00 az (:,:) = 0.0d+00 adx (:) = 1.0d+00 ady (:) = 1.0d+00 adz (:) = 1.0d+00 adr (:) = 1.0d+00 adxi (:) = 1.0d+00 adyi (:) = 1.0d+00 adzi (:) = 1.0d+00 advol(:) = 1.0d+00 ! generate the coordinate variables for each level ! do l = 1, toplev ! calculate the block resolution at each level ! ff = 2**(l - 1) ni = in * ff nj = jn * ff nk = kn * ff ! calculate the cell sizes for each level ! adx (l) = xlen / (ir * ni) ady (l) = ylen / (jr * nj) #if NDIMS == 3 adz (l) = zlen / (kr * nk) #endif /* NDIMS == 3 */ #if NDIMS == 2 adr (l) = sqrt(adx(l)**2 + ady(l)**2) #endif /* NDIMS == 2 */ #if NDIMS == 3 adr (l) = sqrt(adx(l)**2 + ady(l)**2 + adz(l)**2) #endif /* NDIMS == 3 */ ! calculate the inverse of cell size ! adxi(l) = 1.0d+00 / adx(l) adyi(l) = 1.0d+00 / ady(l) #if NDIMS == 3 adzi(l) = 1.0d+00 / adz(l) #endif /* NDIMS == 3 */ ! calculate the block coordinates for each level ! ax(l,:) = ((/(i, i = 1, im)/) - ng - 5.0d-01) * adx(l) ay(l,:) = ((/(j, j = 1, jm)/) - ng - 5.0d-01) * ady(l) #if NDIMS == 3 az(l,:) = ((/(k, k = 1, km)/) - ng - 5.0d-01) * adz(l) #endif /* NDIMS == 3 */ ! calculate the cell volume at each level ! advol(l) = adx(l) * ady(l) * adz(l) end do ! l = 1, toplev ! initialize ghost subarray indices ! np = nc + ng nm = nc - ng nr = nc - nd ns = nc / 2 #if NDIMS == 2 do j = 1, 2 fj = j - 1 q = 3 - j do i = 1, 2 fi = i - 1 p = 3 - i ! for edges copy ! edges_gc(i,j,1)%l(1) = ib + fi * ns edges_gc(i,j,1)%l(2) = 1 + fj * np edges_gc(i,j,2)%l(1) = 1 + fi * np edges_gc(i,j,2)%l(2) = jb + fj * ns edges_dc(i,q,1)%l(1) = ib + fi * ns edges_dc(i,q,1)%l(2) = jb + fj * nm edges_dc(p,j,2)%l(1) = ib + fi * nm edges_dc(p,j,2)%l(2) = jb + fj * ns edges_gc(i,j,1)%u(:) = edges_gc(i,j,1)%l(:) + (/ ns, ng /) - 1 edges_gc(i,j,2)%u(:) = edges_gc(i,j,2)%l(:) + (/ ng, ns /) - 1 edges_dc(i,q,1)%u(:) = edges_dc(i,q,1)%l(:) + (/ ns, ng /) - 1 edges_dc(p,j,2)%u(:) = edges_dc(p,j,2)%l(:) + (/ ng, ns /) - 1 ! for edges restrict ! edges_gr(i,j,1)%l(1) = ib + fi * ns edges_gr(i,j,1)%l(2) = 1 + fj * np edges_gr(i,j,2)%l(1) = 1 + fi * np edges_gr(i,j,2)%l(2) = jb + fj * ns edges_dr(i,q,1)%l(1) = ib edges_dr(i,q,1)%l(2) = jb + fj * nr edges_dr(p,j,2)%l(1) = ib + fi * nr edges_dr(p,j,2)%l(2) = jb edges_gr(i,j,1)%u(:) = edges_gr(i,j,1)%l(:) + (/ ns, ng /) - 1 edges_gr(i,j,2)%u(:) = edges_gr(i,j,2)%l(:) + (/ ng, ns /) - 1 edges_dr(i,q,1)%u(:) = edges_dr(i,q,1)%l(:) + (/ nc, nd /) - 1 edges_dr(p,j,2)%u(:) = edges_dr(p,j,2)%l(:) + (/ nd, nc /) - 1 ! for corners copy ! corners_gc(i,j)%l(1) = 1 + fi * np corners_gc(i,j)%l(2) = 1 + fj * np corners_dc(p,q)%l(1) = ib + fi * nm corners_dc(p,q)%l(2) = jb + fj * nm corners_gc(i,j)%u(:) = corners_gc(i,j)%l(:) + ng - 1 corners_dc(p,q)%u(:) = corners_dc(p,q)%l(:) + ng - 1 ! for corners restrict ! corners_gr(i,j)%l(1) = 1 + fi * np corners_gr(i,j)%l(2) = 1 + fj * np corners_dr(p,q)%l(1) = ib + fi * nr corners_dr(p,q)%l(2) = jb + fj * nr corners_gr(i,j)%u(:) = corners_gr(i,j)%l(:) + ng - 1 corners_dr(p,q)%u(:) = corners_dr(p,q)%l(:) + nd - 1 end do ! i = 1, 2 end do ! j = 1, 2 #endif /* NDIMS == 2 */ #if NDIMS == 3 do k = 1, 2 fk = k - 1 r = 3 - k do j = 1, 2 fj = j - 1 q = 3 - j do i = 1, 2 fi = i - 1 p = 3 - i ! for faces copy ! faces_gc(i,j,k,1)%l(1) = 1 + fi * np faces_gc(i,j,k,1)%l(2) = jb + fj * ns faces_gc(i,j,k,1)%l(3) = kb + fk * ns faces_gc(i,j,k,2)%l(1) = ib + fi * ns faces_gc(i,j,k,2)%l(2) = 1 + fj * np faces_gc(i,j,k,2)%l(3) = kb + fk * ns faces_gc(i,j,k,3)%l(1) = ib + fi * ns faces_gc(i,j,k,3)%l(2) = jb + fj * ns faces_gc(i,j,k,3)%l(3) = 1 + fk * np faces_dc(p,j,k,1)%l(1) = ib + fi * nm faces_dc(p,j,k,1)%l(2) = jb + fj * ns faces_dc(p,j,k,1)%l(3) = kb + fk * ns faces_dc(i,q,k,2)%l(1) = ib + fi * ns faces_dc(i,q,k,2)%l(2) = jb + fj * nm faces_dc(i,q,k,2)%l(3) = kb + fk * ns faces_dc(i,j,r,3)%l(1) = ib + fi * ns faces_dc(i,j,r,3)%l(2) = jb + fj * ns faces_dc(i,j,r,3)%l(3) = kb + fk * nm faces_gc(i,j,k,1)%u(:) = faces_gc(i,j,k,1)%l(:) + (/ ng, ns, ns /) - 1 faces_gc(i,j,k,2)%u(:) = faces_gc(i,j,k,2)%l(:) + (/ ns, ng, ns /) - 1 faces_gc(i,j,k,3)%u(:) = faces_gc(i,j,k,3)%l(:) + (/ ns, ns, ng /) - 1 faces_dc(p,j,k,1)%u(:) = faces_dc(p,j,k,1)%l(:) + (/ ng, ns, ns /) - 1 faces_dc(i,q,k,2)%u(:) = faces_dc(i,q,k,2)%l(:) + (/ ns, ng, ns /) - 1 faces_dc(i,j,r,3)%u(:) = faces_dc(i,j,r,3)%l(:) + (/ ns, ns, ng /) - 1 ! for faces restrict ! faces_gr(i,j,k,1)%l(1) = 1 + fi * np faces_gr(i,j,k,1)%l(2) = jb + fj * ns faces_gr(i,j,k,1)%l(3) = kb + fk * ns faces_gr(i,j,k,2)%l(1) = ib + fi * ns faces_gr(i,j,k,2)%l(2) = 1 + fj * np faces_gr(i,j,k,2)%l(3) = kb + fk * ns faces_gr(i,j,k,3)%l(1) = ib + fi * ns faces_gr(i,j,k,3)%l(2) = jb + fj * ns faces_gr(i,j,k,3)%l(3) = 1 + fk * np faces_dr(p,j,k,1)%l(1) = ib + fi * nr faces_dr(p,j,k,1)%l(2) = jb faces_dr(p,j,k,1)%l(3) = kb faces_dr(i,q,k,2)%l(1) = ib faces_dr(i,q,k,2)%l(2) = jb + fj * nr faces_dr(i,q,k,2)%l(3) = kb faces_dr(i,j,r,3)%l(1) = ib faces_dr(i,j,r,3)%l(2) = jb faces_dr(i,j,r,3)%l(3) = kb + fk * nr faces_gr(i,j,k,1)%u(:) = faces_gr(i,j,k,1)%l(:) + (/ ng, ns, ns /) - 1 faces_gr(i,j,k,2)%u(:) = faces_gr(i,j,k,2)%l(:) + (/ ns, ng, ns /) - 1 faces_gr(i,j,k,3)%u(:) = faces_gr(i,j,k,3)%l(:) + (/ ns, ns, ng /) - 1 faces_dr(p,j,k,1)%u(:) = faces_dr(p,j,k,1)%l(:) + (/ nd, nc, nc /) - 1 faces_dr(i,q,k,2)%u(:) = faces_dr(i,q,k,2)%l(:) + (/ nc, nd, nc /) - 1 faces_dr(i,j,r,3)%u(:) = faces_dr(i,j,r,3)%l(:) + (/ nc, nc, nd /) - 1 ! for edges copy ! edges_gc(i,j,k,1)%l(1) = ib + fi * ns edges_gc(i,j,k,1)%l(2) = 1 + fj * np edges_gc(i,j,k,1)%l(3) = 1 + fk * np edges_gc(i,j,k,2)%l(1) = 1 + fi * np edges_gc(i,j,k,2)%l(2) = jb + fj * ns edges_gc(i,j,k,2)%l(3) = 1 + fk * np edges_gc(i,j,k,3)%l(1) = 1 + fi * np edges_gc(i,j,k,3)%l(2) = 1 + fj * np edges_gc(i,j,k,3)%l(3) = kb + fk * ns edges_dc(i,q,r,1)%l(1) = ib + fi * ns edges_dc(i,q,r,1)%l(2) = jb + fj * nm edges_dc(i,q,r,1)%l(3) = kb + fk * nm edges_dc(p,j,r,2)%l(1) = jb + fi * nm edges_dc(p,j,r,2)%l(2) = jb + fj * ns edges_dc(p,j,r,2)%l(3) = kb + fk * nm edges_dc(p,q,k,3)%l(1) = ib + fi * nm edges_dc(p,q,k,3)%l(2) = jb + fj * nm edges_dc(p,q,k,3)%l(3) = kb + fk * ns edges_gc(i,j,k,1)%u(:) = edges_gc(i,j,k,1)%l(:) + (/ ns, ng, ng /) - 1 edges_gc(i,j,k,2)%u(:) = edges_gc(i,j,k,2)%l(:) + (/ ng, ns, ng /) - 1 edges_gc(i,j,k,3)%u(:) = edges_gc(i,j,k,3)%l(:) + (/ ng, ng, ns /) - 1 edges_dc(i,q,r,1)%u(:) = edges_dc(i,q,r,1)%l(:) + (/ ns, ng, ng /) - 1 edges_dc(p,j,r,2)%u(:) = edges_dc(p,j,r,2)%l(:) + (/ ng, ns, ng /) - 1 edges_dc(p,q,k,3)%u(:) = edges_dc(p,q,k,3)%l(:) + (/ ng, ng, ns /) - 1 ! for edges restrict ! edges_gr(i,j,k,1)%l(1) = ib + fi * ns edges_gr(i,j,k,1)%l(2) = 1 + fj * np edges_gr(i,j,k,1)%l(3) = 1 + fk * np edges_gr(i,j,k,2)%l(1) = 1 + fi * np edges_gr(i,j,k,2)%l(2) = jb + fj * ns edges_gr(i,j,k,2)%l(3) = 1 + fk * np edges_gr(i,j,k,3)%l(1) = 1 + fi * np edges_gr(i,j,k,3)%l(2) = 1 + fj * np edges_gr(i,j,k,3)%l(3) = kb + fk * ns edges_dr(i,q,r,1)%l(1) = ib edges_dr(i,q,r,1)%l(2) = jb + fj * nr edges_dr(i,q,r,1)%l(3) = kb + fk * nr edges_dr(p,j,r,2)%l(1) = ib + fi * nr edges_dr(p,j,r,2)%l(2) = jb edges_dr(p,j,r,2)%l(3) = kb + fk * nr edges_dr(p,q,k,3)%l(1) = ib + fi * nr edges_dr(p,q,k,3)%l(2) = jb + fj * nr edges_dr(p,q,k,3)%l(3) = kb edges_gr(i,j,k,1)%u(:) = edges_gr(i,j,k,1)%l(:) + (/ ns, ng, ng /) - 1 edges_gr(i,j,k,2)%u(:) = edges_gr(i,j,k,2)%l(:) + (/ ng, ns, ng /) - 1 edges_gr(i,j,k,3)%u(:) = edges_gr(i,j,k,3)%l(:) + (/ ng, ng, ns /) - 1 edges_dr(i,q,r,1)%u(:) = edges_dr(i,q,r,1)%l(:) + (/ nc, nd, nd /) - 1 edges_dr(p,j,r,2)%u(:) = edges_dr(p,j,r,2)%l(:) + (/ nd, nc, nd /) - 1 edges_dr(p,q,k,3)%u(:) = edges_dr(p,q,k,3)%l(:) + (/ nd, nd, nc /) - 1 ! for corners copy ! corners_gc(i,j,k)%l(1) = 1 + fi * np corners_gc(i,j,k)%l(2) = 1 + fj * np corners_gc(i,j,k)%l(3) = 1 + fk * np corners_dc(p,q,r)%l(1) = ib + fi * nm corners_dc(p,q,r)%l(2) = jb + fj * nm corners_dc(p,q,r)%l(3) = kb + fk * nm corners_gc(i,j,k)%u(:) = corners_gc(i,j,k)%l(:) + ng - 1 corners_dc(p,q,r)%u(:) = corners_dc(p,q,r)%l(:) + ng - 1 ! for corners restrict ! corners_gr(i,j,k)%l(1) = 1 + fi * np corners_gr(i,j,k)%l(2) = 1 + fj * np corners_gr(i,j,k)%l(3) = 1 + fk * np corners_dr(p,q,r)%l(1) = ib + fi * nr corners_dr(p,q,r)%l(2) = jb + fj * nr corners_dr(p,q,r)%l(3) = kb + fk * nr corners_gr(i,j,k)%u(:) = corners_gr(i,j,k)%l(:) + ng - 1 corners_dr(p,q,r)%u(:) = corners_dr(p,q,r)%l(:) + nd - 1 end do ! i = 1, 2 end do ! j = 1, 2 end do ! k = 1, 2 #endif /* NDIMS == 3 */ ! print general information about the level resolutions ! if (verbose) then ! the base resolution ! cm(1) = ir * in cm(2) = jr * jn cm(3) = kr * kn ! the effective resolution ! ff = 2**(maxlev - 1) rm(1) = cm(1) * ff rm(2) = cm(2) * ff rm(3) = cm(3) * ff ! the top level block division ! dm(1) = rm(1) / in dm(2) = rm(2) / jn dm(3) = rm(3) / kn ! obtain the maximum number of block ! ff = product(dm(1:NDIMS)) ! print info ! write(*,"(4x,a, 1x,i6 )" ) "refinement to level =", toplev write(*,"(4x,a,3(1x,i6 ))") "base configuration =", ir, jr, kr write(*,"(4x,a,3(1x,i6 ))") "top level blocks =", dm(1:NDIMS) write(*,"(4x,a, 3x,i18)" ) "maximum cover blocks =", ff write(*,"(4x,a,3(1x,i6 ))") "base resolution =", cm(1:NDIMS) write(*,"(4x,a,3(1x,i6 ))") "effective resolution =", rm(1:NDIMS) end if ! verbose !------------------------------------------------------------------------------- ! end subroutine initialize_coordinates ! !=============================================================================== ! ! subroutine FINALIZE_COORDINATES: ! ------------------------------- ! ! Subroutine deallocates mesh coordinates. ! ! Arguments: ! ! iret - return flag of the procedure execution status; ! !=============================================================================== ! subroutine finalize_coordinates(iret) ! local variables are not implicit by default ! implicit none ! subroutine arguments ! integer, intent(inout) :: iret ! !------------------------------------------------------------------------------- ! ! deallocating coordinate variables ! if (allocated(ax) ) deallocate(ax) if (allocated(ay) ) deallocate(ay) if (allocated(az) ) deallocate(az) if (allocated(adx) ) deallocate(adx) if (allocated(ady) ) deallocate(ady) if (allocated(adz) ) deallocate(adz) if (allocated(adr) ) deallocate(adr) if (allocated(adxi) ) deallocate(adxi) if (allocated(adyi) ) deallocate(adyi) if (allocated(adzi) ) deallocate(adzi) if (allocated(advol)) deallocate(advol) !------------------------------------------------------------------------------- ! end subroutine finalize_coordinates !=============================================================================== ! end module