Merge branch 'master' into reconnection

This commit is contained in:
Grzegorz Kowal 2017-05-05 07:42:24 -03:00
commit ff3e0349ca

View File

@ -264,6 +264,13 @@ module interpolations
if (verbose .and. ng < 4) &
call print_warning("interpolations:initialize_interpolation" &
, "Increase the number of ghost cells (at least 4).")
case ("mp7", "MP7")
name_rec = "7th order Monotonicity Preserving"
interfaces => interfaces_dir
reconstruct_states => reconstruct_mp7
if (verbose .and. ng < 4) &
call print_warning("interpolations:initialize_interpolation" &
, "Increase the number of ghost cells (at least 4).")
case ("crmp5", "CRMP5")
name_rec = "5th order Compact Monotonicity Preserving"
interfaces => interfaces_dir
@ -3397,7 +3404,7 @@ module interpolations
!
!===============================================================================
!
subroutine reconstruct_mp5(n, h, f, fl, fr)
subroutine reconstruct_mp5(n, h, fc, fl, fr)
! local variables are not implicit by default
!
@ -3407,134 +3414,88 @@ module interpolations
!
integer , intent(in) :: n
real(kind=8) , intent(in) :: h
real(kind=8), dimension(n), intent(in) :: f
real(kind=8), dimension(n), intent(in) :: fc
real(kind=8), dimension(n), intent(out) :: fl, fr
! local variables
!
integer :: i, im1, ip1, im2, ip2
real(kind=8) :: df, ds, dc0, dc4, dm1, dp1, dml, dmr
real(kind=8) :: flc, fmd, fmp, fmn, fmx, ful
real(kind=8) :: sigma
integer :: i
! local arrays for derivatives
!
real(kind=8), dimension(n) :: dfm, dfp
real(kind=8), dimension(n) :: fi
real(kind=8), dimension(n) :: u
! local parameters
!
real(kind=8), dimension(5), parameter :: &
ce5 = (/ 2.0d+00,-1.3d+01, 4.7d+01 &
, 2.7d+01,-3.0d+00 /) / 6.0d+01
real(kind=8), dimension(3), parameter :: &
ce3 = (/-1.0d+00, 5.0d+00, 2.0d+00 /) / 6.0d+00
real(kind=8), dimension(2), parameter :: ce2 = (/ 5.0d-01, 5.0d-01 /)
!
!-------------------------------------------------------------------------------
!
! calculate the left and right derivatives
!! === left-side interpolation ===
!!
! reconstruct the interface state using the 5th order interpolation
!
do i = 1, n - 1
ip1 = i + 1
dfp(i ) = f(ip1) - f(i)
dfm(ip1) = dfp(i)
do i = 3, n - 2
u(i) = sum(ce5(:) * fc(i-2:i+2))
end do
dfm(1) = dfp(1)
dfp(n) = dfm(n)
! obtain the face values using high order interpolation
! interpolate the interface state of the ghost zones using the interpolations
! of lower orders
!
do i = 2, n - 1
u( 1) = sum(ce2(:) * fc( 1: 2))
u( 2) = sum(ce3(:) * fc( 1: 3))
u(n-1) = sum(ce3(:) * fc(n-2: n))
u(n ) = fc(n )
im2 = max(1, i - 2)
im1 = i - 1
ip1 = i + 1
ip2 = min(n, i + 2)
fl(i) = (4.7d+01 * f(i ) + (2.7d+01 * f(ip1) - 1.3d+01 * f(im1)) &
- (3.0d+00 * f(ip2) - 2.0d+00 * f(im2))) &
/ 6.0d+01
fr(i) = (4.7d+01 * f(i ) + (2.7d+01 * f(im1) - 1.3d+01 * f(ip1)) &
- (3.0d+00 * f(im2) - 2.0d+00 * f(ip2))) &
/ 6.0d+01
end do ! i = 2, n - 1
! apply monotonicity preserving limiting
! apply the monotonicity preserving limiting
!
do i = 2, n - 1
call mp_limiting(n, fc(1:n), u(1:n))
im1 = i - 1
ip1 = i + 1
if (dfm(i) * dfp(i) >= 0.0d+00) then
sigma = kappa
else
sigma = kbeta
end if
! get the limiting condition for the left state
! copy the interpolation to the respective vector
!
df = sigma * dfm(i)
fmp = f(i) + minmod(dfp(i), df)
ds = (fl(i) - f(i)) * (fl(i) - fmp)
fl(1:n) = u(1:n)
! limit the left state
!! === right-side interpolation ===
!!
! invert the cell-centered value vector
!
if (ds > eps) then
fi(1:n) = fc(n:1:-1)
dm1 = dfp(im1) - dfm(im1)
dc0 = dfp(i ) - dfm(i )
dp1 = dfp(ip1) - dfm(ip1)
dc4 = 4.0d+00 * dc0
dml = 0.5d+00 * minmod4(dc4 - dm1, 4.0d+00 * dm1 - dc0, dc0, dm1)
dmr = 0.5d+00 * minmod4(dc4 - dp1, 4.0d+00 * dp1 - dc0, dc0, dp1)
fmd = f(i) + 0.5d+00 * dfp(i) - dmr
ful = f(i) + df
flc = f(i) + 0.5d+00 * df + dml
fmx = max(min(f(i), f(ip1), fmd), min(f(i), ful, flc))
fmn = min(max(f(i), f(ip1), fmd), max(f(i), ful, flc))
fl(i) = median(fl(i), fmn, fmx)
end if
! get the limiting condition for the right state
! reconstruct the interface state using the 5th order interpolation
!
df = sigma * dfp(i)
fmp = f(i) - minmod(dfm(i), df)
ds = (fr(i) - f(i)) * (fr(i) - fmp)
do i = 3, n - 2
u(i) = sum(ce5(:) * fi(i-2:i+2))
end do
! limit the right state
! interpolate the interface state of the ghost zones using the interpolations
! of lower orders
!
if (ds > eps) then
u( 1) = sum(ce2(:) * fi( 1: 2))
u( 2) = sum(ce3(:) * fi( 1: 3))
u(n-1) = sum(ce3(:) * fi(n-2: n))
u(n ) = fi(n )
dm1 = dfp(im1) - dfm(im1)
dc0 = dfp(i ) - dfm(i )
dp1 = dfp(ip1) - dfm(ip1)
dc4 = 4.0d+00 * dc0
dml = 0.5d+00 * minmod4(dc4 - dm1, 4.0d+00 * dm1 - dc0, dc0, dm1)
dmr = 0.5d+00 * minmod4(dc4 - dp1, 4.0d+00 * dp1 - dc0, dc0, dp1)
fmd = f(i) - 0.5d+00 * dfm(i) - dml
ful = f(i) - df
flc = f(i) - 0.5d+00 * df + dmr
fmx = max(min(f(i), f(im1), fmd), min(f(i), ful, flc))
fmn = min(max(f(i), f(im1), fmd), max(f(i), ful, flc))
fr(i) = median(fr(i), fmn, fmx)
end if
! shift the right state
! apply the monotonicity preserving limiting
!
fr(im1) = fr(i)
call mp_limiting(n, fi(1:n), u(1:n))
end do ! n = 2, n - 1
! copy the interpolation to the respective vector
!
fr(1:n-1) = u(n-1:1:-1)
! update the interpolation of the first and last points
!
i = n - 1
fl(1) = 0.5d+00 * (f(1) + f(2))
fr(i) = 0.5d+00 * (f(i) + f(n))
fl(n) = f(n)
fr(n) = f(n)
fl(1) = 0.5d+00 * (fc(1) + fc(2))
fr(i) = 0.5d+00 * (fc(i) + fc(n))
fl(n) = fc(n)
fr(n) = fc(n)
!-------------------------------------------------------------------------------
!
@ -3542,6 +3503,137 @@ module interpolations
!
!===============================================================================
!
! subroutine RECONSTRUCT_MP7:
! --------------------------
!
! Subroutine reconstructs the interface states using the seventh order
! Monotonicity Preserving (MP) method.
!
! Arguments are described in subroutine reconstruct().
!
! References:
!
! [1] Suresh, A. & Huynh, H. T.,
! "Accurate Monotonicity-Preserving Schemes with Runge-Kutta
! Time Stepping"
! Journal on Computational Physics,
! 1997, vol. 136, pp. 83-99,
! http://dx.doi.org/10.1006/jcph.1997.5745
! [2] He, ZhiWei, Li, XinLiang, Fu, DeXun, & Ma, YanWen,
! "A 5th order monotonicity-preserving upwind compact difference
! scheme",
! Science China Physics, Mechanics and Astronomy,
! Volume 54, Issue 3, pp. 511-522,
! http://dx.doi.org/10.1007/s11433-010-4220-x
!
!===============================================================================
!
subroutine reconstruct_mp7(n, h, fc, fl, fr)
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
integer , intent(in) :: n
real(kind=8) , intent(in) :: h
real(kind=8), dimension(n), intent(in) :: fc
real(kind=8), dimension(n), intent(out) :: fl, fr
! local variables
!
integer :: i
! local arrays for derivatives
!
real(kind=8), dimension(n) :: fi
real(kind=8), dimension(n) :: u
! local parameters
!
real(kind=8), dimension(7), parameter :: &
ce7 = (/-3.0d+00, 2.5d+01,-1.01d+02, 3.19d+02 &
, 2.14d+02,-3.8d+01, 4.0d+00 /) / 4.2d+02
real(kind=8), dimension(5), parameter :: &
ce5 = (/ 2.0d+00,-1.3d+01, 4.7d+01 &
, 2.7d+01,-3.0d+00 /) / 6.0d+01
real(kind=8), dimension(3), parameter :: &
ce3 = (/-1.0d+00, 5.0d+00, 2.0d+00 /) / 6.0d+00
real(kind=8), dimension(2), parameter :: ce2 = (/ 5.0d-01, 5.0d-01 /)
!
!-------------------------------------------------------------------------------
!
!! === left-side interpolation ===
!!
! reconstruct the interface state using the 5th order interpolation
!
do i = 4, n - 3
u(i) = sum(ce7(:) * fc(i-3:i+3))
end do
! interpolate the interface state of the ghost zones using the interpolations
! of lower orders
!
u( 1) = sum(ce2(:) * fc( 1: 2))
u( 2) = sum(ce3(:) * fc( 1: 3))
u( 3) = sum(ce5(:) * fc( 1: 5))
u(n-2) = sum(ce5(:) * fc(n-4: n))
u(n-1) = sum(ce3(:) * fc(n-2: n))
u(n ) = fc(n )
! apply the monotonicity preserving limiting
!
call mp_limiting(n, fc(1:n), u(1:n))
! copy the interpolation to the respective vector
!
fl(1:n) = u(1:n)
!! === right-side interpolation ===
!!
! invert the cell-centered value vector
!
fi(1:n) = fc(n:1:-1)
! reconstruct the interface state using the 5th order interpolation
!
do i = 4, n - 3
u(i) = sum(ce7(:) * fi(i-3:i+3))
end do
! interpolate the interface state of the ghost zones using the interpolations
! of lower orders
!
u( 1) = sum(ce2(:) * fi( 1: 2))
u( 2) = sum(ce3(:) * fi( 1: 3))
u( 3) = sum(ce5(:) * fi( 1: 5))
u(n-2) = sum(ce5(:) * fi(n-4: n))
u(n-1) = sum(ce3(:) * fi(n-2: n))
u(n ) = fi(n )
! apply the monotonicity preserving limiting
!
call mp_limiting(n, fi(1:n), u(1:n))
! copy the interpolation to the respective vector
!
fr(1:n-1) = u(n-1:1:-1)
! update the interpolation of the first and last points
!
i = n - 1
fl(1) = 0.5d+00 * (fc(1) + fc(2))
fr(i) = 0.5d+00 * (fc(i) + fc(n))
fl(n) = fc(n)
fr(n) = fc(n)
!-------------------------------------------------------------------------------
!
end subroutine reconstruct_mp7
!
!===============================================================================
!
! subroutine RECONSTRUCT_CRMP5:
! ----------------------------
!
@ -3583,6 +3675,7 @@ module interpolations
real(kind=8) , intent(in) :: h
real(kind=8), dimension(n), intent(in) :: fc
real(kind=8), dimension(n), intent(out) :: fl, fr
! local variables
!
integer :: i