PYTHON: Import numpy without abbreviation.
Signed-off-by: Grzegorz Kowal <grzegorz@amuncode.org>
This commit is contained in:
parent
b7496e0b3d
commit
f4df543b2c
@ -240,18 +240,18 @@ class Amun:
|
||||
"""
|
||||
Get dataset array of name dataset_name from the file n.
|
||||
"""
|
||||
import numpy as np
|
||||
import numpy
|
||||
|
||||
dataset = self.variables[dataset_name]
|
||||
|
||||
if dataset == 'mlev':
|
||||
dset = np.zeros(self.chunks[chunk_number]['dims'])
|
||||
dset = numpy.zeros(self.chunks[chunk_number]['dims'])
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
dset[...,p] = self.chunks[chunk_number]['levels'][p]
|
||||
elif dataset == 'logd':
|
||||
dset = np.log10(self.__read_binary_data__('dens', chunk_number))
|
||||
dset = numpy.log10(self.__read_binary_data__('dens', chunk_number))
|
||||
elif dataset == 'logp':
|
||||
dset = np.log10(self.__read_binary_data__('pres', chunk_number))
|
||||
dset = numpy.log10(self.__read_binary_data__('pres', chunk_number))
|
||||
elif dataset == 'velo':
|
||||
tmp = self.__read_binary_data__('velx', chunk_number)
|
||||
dset = tmp**2
|
||||
@ -259,7 +259,7 @@ class Amun:
|
||||
dset += tmp**2
|
||||
tmp = self.__read_binary_data__('velz', chunk_number)
|
||||
dset += tmp**2
|
||||
dset = np.sqrt(dset)
|
||||
dset = numpy.sqrt(dset)
|
||||
elif dataset == 'vvec':
|
||||
dset = [self.__read_binary_data__('velx', chunk_number), \
|
||||
self.__read_binary_data__('vely', chunk_number), \
|
||||
@ -271,7 +271,7 @@ class Amun:
|
||||
dset += tmp**2
|
||||
tmp = self.__read_binary_data__('magz', chunk_number)
|
||||
dset += tmp**2
|
||||
dset = np.sqrt(dset)
|
||||
dset = numpy.sqrt(dset)
|
||||
elif dataset == 'bvec':
|
||||
dset = [self.__read_binary_data__('magx', chunk_number), \
|
||||
self.__read_binary_data__('magy', chunk_number), \
|
||||
@ -302,10 +302,10 @@ class Amun:
|
||||
dset = vy * bz - vz * by
|
||||
if self.attributes['resistivity'] > 0:
|
||||
if self.attributes['ndims'] == 3:
|
||||
tmp = (np.roll(by, 1, axis=0) - np.roll(by, -1, axis=0))
|
||||
tmp += (np.roll(bz, -1, axis=1) - np.roll(bz, 1, axis=1))
|
||||
tmp = (numpy.roll(by, 1, axis=0) - numpy.roll(by, -1, axis=0))
|
||||
tmp += (numpy.roll(bz, -1, axis=1) - numpy.roll(bz, 1, axis=1))
|
||||
else:
|
||||
tmp = (np.roll(bz, -1, axis=0) - np.roll(bz, 1, axis=0))
|
||||
tmp = (numpy.roll(bz, -1, axis=0) - numpy.roll(bz, 1, axis=0))
|
||||
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
tmp[...,p] /= self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
@ -318,10 +318,10 @@ class Amun:
|
||||
dset = vz * bx - vx * bz
|
||||
if self.attributes['resistivity'] > 0:
|
||||
if self.attributes['ndims'] == 3:
|
||||
tmp = (np.roll(bx, -1, axis=0) - np.roll(bx, 1, axis=0))
|
||||
tmp += (np.roll(bz, 1, axis=2) - np.roll(bz, -1, axis=2))
|
||||
tmp = (numpy.roll(bx, -1, axis=0) - numpy.roll(bx, 1, axis=0))
|
||||
tmp += (numpy.roll(bz, 1, axis=2) - numpy.roll(bz, -1, axis=2))
|
||||
else:
|
||||
tmp = (np.roll(bz, 1, axis=1) - np.roll(bz, -1, axis=1))
|
||||
tmp = (numpy.roll(bz, 1, axis=1) - numpy.roll(bz, -1, axis=1))
|
||||
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
tmp[...,p] /= self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
@ -334,11 +334,11 @@ class Amun:
|
||||
dset = vx * by - vy * bx
|
||||
if self.attributes['resistivity'] > 0:
|
||||
if self.attributes['ndims'] == 3:
|
||||
tmp = (np.roll(bx, 1, axis=1) - np.roll(bx, -1, axis=1))
|
||||
tmp += (np.roll(by, -1, axis=2) - np.roll(by, 1, axis=2))
|
||||
tmp = (numpy.roll(bx, 1, axis=1) - numpy.roll(bx, -1, axis=1))
|
||||
tmp += (numpy.roll(by, -1, axis=2) - numpy.roll(by, 1, axis=2))
|
||||
else:
|
||||
tmp = (np.roll(bx, 1, axis=0) - np.roll(bx, -1, axis=0))
|
||||
tmp += (np.roll(by, -1, axis=1) - np.roll(by, 1, axis=1))
|
||||
tmp = (numpy.roll(bx, 1, axis=0) - numpy.roll(bx, -1, axis=0))
|
||||
tmp += (numpy.roll(by, -1, axis=1) - numpy.roll(by, 1, axis=1))
|
||||
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
tmp[...,p] /= self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
@ -351,10 +351,10 @@ class Amun:
|
||||
dtmp = v1 * b2 - v2 * b1
|
||||
if self.attributes['resistivity'] > 0:
|
||||
if self.attributes['ndims'] == 3:
|
||||
tmp = (np.roll(b1, 1, axis=0) - np.roll(b1, -1, axis=0))
|
||||
tmp += (np.roll(b2, -1, axis=1) - np.roll(b2, 1, axis=1))
|
||||
tmp = (numpy.roll(b1, 1, axis=0) - numpy.roll(b1, -1, axis=0))
|
||||
tmp += (numpy.roll(b2, -1, axis=1) - numpy.roll(b2, 1, axis=1))
|
||||
else:
|
||||
tmp = (np.roll(b2, -1, axis=0) - np.roll(b2, 1, axis=0))
|
||||
tmp = (numpy.roll(b2, -1, axis=0) - numpy.roll(b2, 1, axis=0))
|
||||
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
tmp[...,p] /= self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
@ -366,10 +366,10 @@ class Amun:
|
||||
dtmp = v2 * b1 - v1 * b2
|
||||
if self.attributes['resistivity'] > 0:
|
||||
if self.attributes['ndims'] == 3:
|
||||
tmp = (np.roll(b1, -1, axis=0) - np.roll(b1, 1, axis=0))
|
||||
tmp += (np.roll(b2, 1, axis=2) - np.roll(b2, -1, axis=2))
|
||||
tmp = (numpy.roll(b1, -1, axis=0) - numpy.roll(b1, 1, axis=0))
|
||||
tmp += (numpy.roll(b2, 1, axis=2) - numpy.roll(b2, -1, axis=2))
|
||||
else:
|
||||
tmp = (np.roll(b2, 1, axis=1) - np.roll(b2, -1, axis=1))
|
||||
tmp = (numpy.roll(b2, 1, axis=1) - numpy.roll(b2, -1, axis=1))
|
||||
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
tmp[...,p] /= self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
@ -381,17 +381,17 @@ class Amun:
|
||||
dtmp = v1 * b2 - v2 * b1
|
||||
if self.attributes['resistivity'] > 0:
|
||||
if self.attributes['ndims'] == 3:
|
||||
tmp = (np.roll(b1, 1, axis=1) - np.roll(b1, -1, axis=1))
|
||||
tmp += (np.roll(b2, -1, axis=2) - np.roll(b2, 1, axis=2))
|
||||
tmp = (numpy.roll(b1, 1, axis=1) - numpy.roll(b1, -1, axis=1))
|
||||
tmp += (numpy.roll(b2, -1, axis=2) - numpy.roll(b2, 1, axis=2))
|
||||
else:
|
||||
tmp = (np.roll(b1, 1, axis=0) - np.roll(b1, -1, axis=0))
|
||||
tmp += (np.roll(b2, -1, axis=1) - np.roll(b2, 1, axis=1))
|
||||
tmp = (numpy.roll(b1, 1, axis=0) - numpy.roll(b1, -1, axis=0))
|
||||
tmp += (numpy.roll(b2, -1, axis=1) - numpy.roll(b2, 1, axis=1))
|
||||
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
tmp[...,p] /= self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
dtmp -= 0.5 * self.attributes['resistivity'] * tmp
|
||||
dset += dtmp**2
|
||||
dset = np.sqrt(dset)
|
||||
dset = numpy.sqrt(dset)
|
||||
elif dataset == 'evec':
|
||||
b1 = self.__read_binary_data__('magy', chunk_number)
|
||||
b2 = self.__read_binary_data__('magz', chunk_number)
|
||||
@ -400,10 +400,10 @@ class Amun:
|
||||
wx = v1 * b2 - v2 * b1
|
||||
if self.attributes['resistivity'] > 0:
|
||||
if self.attributes['ndims'] == 3:
|
||||
tmp = (np.roll(b1, 1, axis=0) - np.roll(b1, -1, axis=0))
|
||||
tmp += (np.roll(b2, -1, axis=1) - np.roll(b2, 1, axis=1))
|
||||
tmp = (numpy.roll(b1, 1, axis=0) - numpy.roll(b1, -1, axis=0))
|
||||
tmp += (numpy.roll(b2, -1, axis=1) - numpy.roll(b2, 1, axis=1))
|
||||
else:
|
||||
tmp = (np.roll(b2, -1, axis=0) - np.roll(b2, 1, axis=0))
|
||||
tmp = (numpy.roll(b2, -1, axis=0) - numpy.roll(b2, 1, axis=0))
|
||||
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
tmp[...,p] /= self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
@ -414,10 +414,10 @@ class Amun:
|
||||
wy = v2 * b1 - v1 * b2
|
||||
if self.attributes['resistivity'] > 0:
|
||||
if self.attributes['ndims'] == 3:
|
||||
tmp = (np.roll(b1, -1, axis=0) - np.roll(b1, 1, axis=0))
|
||||
tmp += (np.roll(b2, 1, axis=2) - np.roll(b2, -1, axis=2))
|
||||
tmp = (numpy.roll(b1, -1, axis=0) - numpy.roll(b1, 1, axis=0))
|
||||
tmp += (numpy.roll(b2, 1, axis=2) - numpy.roll(b2, -1, axis=2))
|
||||
else:
|
||||
tmp = (np.roll(b2, 1, axis=1) - np.roll(b2, -1, axis=1))
|
||||
tmp = (numpy.roll(b2, 1, axis=1) - numpy.roll(b2, -1, axis=1))
|
||||
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
tmp[...,p] /= self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
@ -428,11 +428,11 @@ class Amun:
|
||||
wz = v1 * b2 - v2 * b1
|
||||
if self.attributes['resistivity'] > 0:
|
||||
if self.attributes['ndims'] == 3:
|
||||
tmp = (np.roll(b1, 1, axis=1) - np.roll(b1, -1, axis=1))
|
||||
tmp += (np.roll(b2, -1, axis=2) - np.roll(b2, 1, axis=2))
|
||||
tmp = (numpy.roll(b1, 1, axis=1) - numpy.roll(b1, -1, axis=1))
|
||||
tmp += (numpy.roll(b2, -1, axis=2) - numpy.roll(b2, 1, axis=2))
|
||||
else:
|
||||
tmp = (np.roll(b1, 1, axis=0) - np.roll(b1, -1, axis=0))
|
||||
tmp += (np.roll(b2, -1, axis=1) - np.roll(b2, 1, axis=1))
|
||||
tmp = (numpy.roll(b1, 1, axis=0) - numpy.roll(b1, -1, axis=0))
|
||||
tmp += (numpy.roll(b2, -1, axis=1) - numpy.roll(b2, 1, axis=1))
|
||||
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
tmp[...,p] /= self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
@ -470,21 +470,21 @@ class Amun:
|
||||
dset += tmp**2
|
||||
tmp = self.__read_binary_data__('velz', chunk_number)
|
||||
dset += tmp**2
|
||||
dset = 1.0 / np.sqrt(1.0 - dset)
|
||||
dset = 1.0 / numpy.sqrt(1.0 - dset)
|
||||
elif dataset == 'divv':
|
||||
p = self.attributes['ndims'] - 1
|
||||
tmp = self.__read_binary_data__('velx', chunk_number)
|
||||
dset = (np.roll(tmp, -1, axis=p) \
|
||||
- np.roll(tmp, 1, axis=p))
|
||||
dset = (numpy.roll(tmp, -1, axis=p) \
|
||||
- numpy.roll(tmp, 1, axis=p))
|
||||
p -= 1
|
||||
tmp = self.__read_binary_data__('vely', chunk_number)
|
||||
dset += (np.roll(tmp, -1, axis=p) \
|
||||
- np.roll(tmp, 1, axis=p))
|
||||
dset += (numpy.roll(tmp, -1, axis=p) \
|
||||
- numpy.roll(tmp, 1, axis=p))
|
||||
p -= 1
|
||||
if p >= 0:
|
||||
tmp = self.__read_binary_data__('velz', chunk_number)
|
||||
dset += (np.roll(tmp, -1, axis=p) \
|
||||
- np.roll(tmp, 0, axis=p))
|
||||
dset += (numpy.roll(tmp, -1, axis=p) \
|
||||
- numpy.roll(tmp, 0, axis=p))
|
||||
|
||||
dset *= 0.5
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
@ -492,15 +492,15 @@ class Amun:
|
||||
elif dataset == 'vorx':
|
||||
if self.attributes['ndims'] == 3:
|
||||
tmp = self.__read_binary_data__('vely', chunk_number)
|
||||
dset = (np.roll(tmp, 1, axis=0) \
|
||||
- np.roll(tmp, -1, axis=0))
|
||||
dset = (numpy.roll(tmp, 1, axis=0) \
|
||||
- numpy.roll(tmp, -1, axis=0))
|
||||
tmp = self.__read_binary_data__('velz', chunk_number)
|
||||
dset += (np.roll(tmp, -1, axis=1) \
|
||||
- np.roll(tmp, 1, axis=1))
|
||||
dset += (numpy.roll(tmp, -1, axis=1) \
|
||||
- numpy.roll(tmp, 1, axis=1))
|
||||
else:
|
||||
tmp = self.__read_binary_data__('velz', chunk_number)
|
||||
dset = (np.roll(tmp, -1, axis=0) \
|
||||
- np.roll(tmp, 1, axis=0))
|
||||
dset = (numpy.roll(tmp, -1, axis=0) \
|
||||
- numpy.roll(tmp, 1, axis=0))
|
||||
|
||||
dset *= 0.5
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
@ -508,15 +508,15 @@ class Amun:
|
||||
elif dataset == 'vory':
|
||||
if self.attributes['ndims'] == 3:
|
||||
tmp = self.__read_binary_data__('velx', chunk_number)
|
||||
dset = (np.roll(tmp, -1, axis=0) \
|
||||
- np.roll(tmp, 1, axis=0))
|
||||
dset = (numpy.roll(tmp, -1, axis=0) \
|
||||
- numpy.roll(tmp, 1, axis=0))
|
||||
tmp = self.__read_binary_data__('velz', chunk_number)
|
||||
dset += (np.roll(tmp, 1, axis=2) \
|
||||
- np.roll(tmp, -1, axis=2))
|
||||
dset += (numpy.roll(tmp, 1, axis=2) \
|
||||
- numpy.roll(tmp, -1, axis=2))
|
||||
else:
|
||||
tmp = self.__read_binary_data__('velz', chunk_number)
|
||||
dset = (np.roll(tmp, 1, axis=1) \
|
||||
- np.roll(tmp, -1, axis=1))
|
||||
dset = (numpy.roll(tmp, 1, axis=1) \
|
||||
- numpy.roll(tmp, -1, axis=1))
|
||||
|
||||
dset *= 0.5
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
@ -524,18 +524,18 @@ class Amun:
|
||||
elif dataset == 'vorz':
|
||||
if self.attributes['ndims'] == 3:
|
||||
tmp = self.__read_binary_data__('velx', chunk_number)
|
||||
dset = (np.roll(tmp, 1, axis=1) \
|
||||
- np.roll(tmp, -1, axis=1))
|
||||
dset = (numpy.roll(tmp, 1, axis=1) \
|
||||
- numpy.roll(tmp, -1, axis=1))
|
||||
tmp = self.__read_binary_data__('vely', chunk_number)
|
||||
dset += (np.roll(tmp, -1, axis=2) \
|
||||
- np.roll(tmp, 1, axis=2))
|
||||
dset += (numpy.roll(tmp, -1, axis=2) \
|
||||
- numpy.roll(tmp, 1, axis=2))
|
||||
else:
|
||||
tmp = self.__read_binary_data__('velx', chunk_number)
|
||||
dset = (np.roll(tmp, 1, axis=0) \
|
||||
- np.roll(tmp, -1, axis=0))
|
||||
dset = (numpy.roll(tmp, 1, axis=0) \
|
||||
- numpy.roll(tmp, -1, axis=0))
|
||||
tmp = self.__read_binary_data__('vely', chunk_number)
|
||||
dset += (np.roll(tmp, -1, axis=1) \
|
||||
- np.roll(tmp, 1, axis=1))
|
||||
dset += (numpy.roll(tmp, -1, axis=1) \
|
||||
- numpy.roll(tmp, 1, axis=1))
|
||||
|
||||
dset *= 0.5
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
@ -543,32 +543,32 @@ class Amun:
|
||||
elif dataset == 'wvec':
|
||||
if self.attributes['ndims'] == 3:
|
||||
tmp = self.__read_binary_data__('velx', chunk_number)
|
||||
wy = (np.roll(tmp, -1, axis=0) \
|
||||
- np.roll(tmp, 1, axis=0))
|
||||
wz = (np.roll(tmp, 1, axis=1) \
|
||||
- np.roll(tmp, -1, axis=1))
|
||||
wy = (numpy.roll(tmp, -1, axis=0) \
|
||||
- numpy.roll(tmp, 1, axis=0))
|
||||
wz = (numpy.roll(tmp, 1, axis=1) \
|
||||
- numpy.roll(tmp, -1, axis=1))
|
||||
tmp = self.__read_binary_data__('vely', chunk_number)
|
||||
wz += (np.roll(tmp, -1, axis=2) \
|
||||
- np.roll(tmp, 1, axis=2))
|
||||
wx = (np.roll(tmp, 1, axis=0) \
|
||||
- np.roll(tmp, -1, axis=0))
|
||||
wz += (numpy.roll(tmp, -1, axis=2) \
|
||||
- numpy.roll(tmp, 1, axis=2))
|
||||
wx = (numpy.roll(tmp, 1, axis=0) \
|
||||
- numpy.roll(tmp, -1, axis=0))
|
||||
tmp = self.__read_binary_data__('velz', chunk_number)
|
||||
wx += (np.roll(tmp, -1, axis=1) \
|
||||
- np.roll(tmp, 1, axis=1))
|
||||
wy += (np.roll(tmp, 1, axis=2) \
|
||||
- np.roll(tmp, -1, axis=2))
|
||||
wx += (numpy.roll(tmp, -1, axis=1) \
|
||||
- numpy.roll(tmp, 1, axis=1))
|
||||
wy += (numpy.roll(tmp, 1, axis=2) \
|
||||
- numpy.roll(tmp, -1, axis=2))
|
||||
else:
|
||||
tmp = self.__read_binary_data__('velx', chunk_number)
|
||||
wz = (np.roll(tmp, 1, axis=0) \
|
||||
- np.roll(tmp, -1, axis=0))
|
||||
wz = (numpy.roll(tmp, 1, axis=0) \
|
||||
- numpy.roll(tmp, -1, axis=0))
|
||||
tmp = self.__read_binary_data__('vely', chunk_number)
|
||||
wz += (np.roll(tmp, -1, axis=1) \
|
||||
- np.roll(tmp, 1, axis=1))
|
||||
wz += (numpy.roll(tmp, -1, axis=1) \
|
||||
- numpy.roll(tmp, 1, axis=1))
|
||||
tmp = self.__read_binary_data__('velz', chunk_number)
|
||||
wx = (np.roll(tmp, -1, axis=0) \
|
||||
- np.roll(tmp, 1, axis=0))
|
||||
wy = (np.roll(tmp, 1, axis=1) \
|
||||
- np.roll(tmp, -1, axis=1))
|
||||
wx = (numpy.roll(tmp, -1, axis=0) \
|
||||
- numpy.roll(tmp, 1, axis=0))
|
||||
wy = (numpy.roll(tmp, 1, axis=1) \
|
||||
- numpy.roll(tmp, -1, axis=1))
|
||||
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
h = 2 * self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
@ -580,47 +580,47 @@ class Amun:
|
||||
elif dataset == 'vort':
|
||||
if self.attributes['ndims'] == 3:
|
||||
tmp = self.__read_binary_data__('velx', chunk_number)
|
||||
wy = (np.roll(tmp, -1, axis=0) \
|
||||
- np.roll(tmp, 1, axis=0))
|
||||
wz = (np.roll(tmp, 1, axis=1) \
|
||||
- np.roll(tmp, -1, axis=1))
|
||||
wy = (numpy.roll(tmp, -1, axis=0) \
|
||||
- numpy.roll(tmp, 1, axis=0))
|
||||
wz = (numpy.roll(tmp, 1, axis=1) \
|
||||
- numpy.roll(tmp, -1, axis=1))
|
||||
tmp = self.__read_binary_data__('vely', chunk_number)
|
||||
wz += (np.roll(tmp, -1, axis=2) \
|
||||
- np.roll(tmp, 1, axis=2))
|
||||
wx = (np.roll(tmp, 1, axis=0) \
|
||||
- np.roll(tmp, -1, axis=0))
|
||||
wz += (numpy.roll(tmp, -1, axis=2) \
|
||||
- numpy.roll(tmp, 1, axis=2))
|
||||
wx = (numpy.roll(tmp, 1, axis=0) \
|
||||
- numpy.roll(tmp, -1, axis=0))
|
||||
tmp = self.__read_binary_data__('velz', chunk_number)
|
||||
wx += (np.roll(tmp, -1, axis=1) \
|
||||
- np.roll(tmp, 1, axis=1))
|
||||
wy += (np.roll(tmp, 1, axis=2) \
|
||||
- np.roll(tmp, -1, axis=2))
|
||||
wx += (numpy.roll(tmp, -1, axis=1) \
|
||||
- numpy.roll(tmp, 1, axis=1))
|
||||
wy += (numpy.roll(tmp, 1, axis=2) \
|
||||
- numpy.roll(tmp, -1, axis=2))
|
||||
else:
|
||||
tmp = self.__read_binary_data__('velx', chunk_number)
|
||||
wz = (np.roll(tmp, 1, axis=0) \
|
||||
- np.roll(tmp, -1, axis=0))
|
||||
wz = (numpy.roll(tmp, 1, axis=0) \
|
||||
- numpy.roll(tmp, -1, axis=0))
|
||||
tmp = self.__read_binary_data__('vely', chunk_number)
|
||||
wz += (np.roll(tmp, -1, axis=1) \
|
||||
- np.roll(tmp, 1, axis=1))
|
||||
wz += (numpy.roll(tmp, -1, axis=1) \
|
||||
- numpy.roll(tmp, 1, axis=1))
|
||||
tmp = self.__read_binary_data__('velz', chunk_number)
|
||||
wx = (np.roll(tmp, -1, axis=0) \
|
||||
- np.roll(tmp, 1, axis=0))
|
||||
wy = (np.roll(tmp, 1, axis=1) \
|
||||
- np.roll(tmp, -1, axis=1))
|
||||
wx = (numpy.roll(tmp, -1, axis=0) \
|
||||
- numpy.roll(tmp, 1, axis=0))
|
||||
wy = (numpy.roll(tmp, 1, axis=1) \
|
||||
- numpy.roll(tmp, -1, axis=1))
|
||||
|
||||
dset = 0.5 * np.sqrt(wx**2 + wy**2 + wz**2)
|
||||
dset = 0.5 * numpy.sqrt(wx**2 + wy**2 + wz**2)
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
dset[...,p] /= self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
elif dataset == 'dvxdx':
|
||||
p = self.attributes['ndims'] - 1
|
||||
tmp = self.__read_binary_data__('velx', chunk_number)
|
||||
dset = np.roll(tmp, -1, axis=p) - np.roll(tmp, 1, axis=p)
|
||||
dset = numpy.roll(tmp, -1, axis=p) - numpy.roll(tmp, 1, axis=p)
|
||||
dset *= 0.5
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
dset[...,p] /= self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
elif dataset == 'dvxdy':
|
||||
p = self.attributes['ndims'] - 2
|
||||
tmp = self.__read_binary_data__('velx', chunk_number)
|
||||
dset = np.roll(tmp, -1, axis=p) - np.roll(tmp, 1, axis=p)
|
||||
dset = numpy.roll(tmp, -1, axis=p) - numpy.roll(tmp, 1, axis=p)
|
||||
dset *= 0.5
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
dset[...,p] /= self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
@ -628,23 +628,23 @@ class Amun:
|
||||
p = self.attributes['ndims'] - 3
|
||||
tmp = self.__read_binary_data__('velx', chunk_number)
|
||||
if p >= 0:
|
||||
dset = np.roll(tmp, -1, axis=p) - np.roll(tmp, 1, axis=p)
|
||||
dset = numpy.roll(tmp, -1, axis=p) - numpy.roll(tmp, 1, axis=p)
|
||||
dset *= 0.5
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
dset[...,p] /= self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
else:
|
||||
dset = np.zeros_like(tmp)
|
||||
dset = numpy.zeros_like(tmp)
|
||||
elif dataset == 'dvydx':
|
||||
p = self.attributes['ndims'] - 1
|
||||
tmp = self.__read_binary_data__('vely', chunk_number)
|
||||
dset = np.roll(tmp, -1, axis=p) - np.roll(tmp, 1, axis=p)
|
||||
dset = numpy.roll(tmp, -1, axis=p) - numpy.roll(tmp, 1, axis=p)
|
||||
dset *= 0.5
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
dset[...,p] /= self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
elif dataset == 'dvydy':
|
||||
p = self.attributes['ndims'] - 2
|
||||
tmp = self.__read_binary_data__('vely', chunk_number)
|
||||
dset = np.roll(tmp, -1, axis=p) - np.roll(tmp, 1, axis=p)
|
||||
dset = numpy.roll(tmp, -1, axis=p) - numpy.roll(tmp, 1, axis=p)
|
||||
dset *= 0.5
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
dset[...,p] /= self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
@ -652,23 +652,23 @@ class Amun:
|
||||
p = self.attributes['ndims'] - 3
|
||||
tmp = self.__read_binary_data__('vely', chunk_number)
|
||||
if p >= 0:
|
||||
dset = np.roll(tmp, -1, axis=p) - np.roll(tmp, 1, axis=p)
|
||||
dset = numpy.roll(tmp, -1, axis=p) - numpy.roll(tmp, 1, axis=p)
|
||||
dset *= 0.5
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
dset[...,p] /= self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
else:
|
||||
dset = np.zeros_like(tmp)
|
||||
dset = numpy.zeros_like(tmp)
|
||||
elif dataset == 'dvzdx':
|
||||
p = self.attributes['ndims'] - 1
|
||||
tmp = self.__read_binary_data__('velz', chunk_number)
|
||||
dset = np.roll(tmp, -1, axis=p) - np.roll(tmp, 1, axis=p)
|
||||
dset = numpy.roll(tmp, -1, axis=p) - numpy.roll(tmp, 1, axis=p)
|
||||
dset *= 0.5
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
dset[...,p] /= self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
elif dataset == 'dvzdy':
|
||||
p = self.attributes['ndims'] - 2
|
||||
tmp = self.__read_binary_data__('velz', chunk_number)
|
||||
dset = np.roll(tmp, -1, axis=p) - np.roll(tmp, 1, axis=p)
|
||||
dset = numpy.roll(tmp, -1, axis=p) - numpy.roll(tmp, 1, axis=p)
|
||||
dset *= 0.5
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
dset[...,p] /= self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
@ -676,26 +676,26 @@ class Amun:
|
||||
p = self.attributes['ndims'] - 3
|
||||
tmp = self.__read_binary_data__('velz', chunk_number)
|
||||
if p >= 0:
|
||||
dset = np.roll(tmp, -1, axis=p) - np.roll(tmp, 1, axis=p)
|
||||
dset = numpy.roll(tmp, -1, axis=p) - numpy.roll(tmp, 1, axis=p)
|
||||
dset *= 0.5
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
dset[...,p] /= self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
else:
|
||||
dset = np.zeros_like(tmp)
|
||||
dset = numpy.zeros_like(tmp)
|
||||
elif dataset == 'divb':
|
||||
p = self.attributes['ndims'] - 1
|
||||
tmp = self.__read_binary_data__('magx', chunk_number)
|
||||
dset = (np.roll(tmp, -1, axis=p) \
|
||||
- np.roll(tmp, 1, axis=p))
|
||||
dset = (numpy.roll(tmp, -1, axis=p) \
|
||||
- numpy.roll(tmp, 1, axis=p))
|
||||
p -= 1
|
||||
tmp = self.__read_binary_data__('magy', chunk_number)
|
||||
dset += (np.roll(tmp, -1, axis=p) \
|
||||
- np.roll(tmp, 1, axis=p))
|
||||
dset += (numpy.roll(tmp, -1, axis=p) \
|
||||
- numpy.roll(tmp, 1, axis=p))
|
||||
p -= 1
|
||||
if p >= 0:
|
||||
tmp = self.__read_binary_data__('magz', chunk_number)
|
||||
dset += (np.roll(tmp, -1, axis=p) \
|
||||
- np.roll(tmp, 0, axis=p))
|
||||
dset += (numpy.roll(tmp, -1, axis=p) \
|
||||
- numpy.roll(tmp, 0, axis=p))
|
||||
|
||||
dset *= 0.5
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
@ -703,15 +703,15 @@ class Amun:
|
||||
elif dataset == 'curx':
|
||||
if self.attributes['ndims'] == 3:
|
||||
tmp = self.__read_binary_data__('magy', chunk_number)
|
||||
dset = (np.roll(tmp, 1, axis=0) \
|
||||
- np.roll(tmp, -1, axis=0))
|
||||
dset = (numpy.roll(tmp, 1, axis=0) \
|
||||
- numpy.roll(tmp, -1, axis=0))
|
||||
tmp = self.__read_binary_data__('magz', chunk_number)
|
||||
dset += (np.roll(tmp, -1, axis=1) \
|
||||
- np.roll(tmp, 1, axis=1))
|
||||
dset += (numpy.roll(tmp, -1, axis=1) \
|
||||
- numpy.roll(tmp, 1, axis=1))
|
||||
else:
|
||||
tmp = self.__read_binary_data__('magz', chunk_number)
|
||||
dset = (np.roll(tmp, -1, axis=0) \
|
||||
- np.roll(tmp, 1, axis=0))
|
||||
dset = (numpy.roll(tmp, -1, axis=0) \
|
||||
- numpy.roll(tmp, 1, axis=0))
|
||||
|
||||
dset *= 0.5
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
@ -719,15 +719,15 @@ class Amun:
|
||||
elif dataset == 'cury':
|
||||
if self.attributes['ndims'] == 3:
|
||||
tmp = self.__read_binary_data__('magx', chunk_number)
|
||||
dset = (np.roll(tmp, -1, axis=0) \
|
||||
- np.roll(tmp, 1, axis=0))
|
||||
dset = (numpy.roll(tmp, -1, axis=0) \
|
||||
- numpy.roll(tmp, 1, axis=0))
|
||||
tmp = self.__read_binary_data__('magz', chunk_number)
|
||||
dset += (np.roll(tmp, 1, axis=2) \
|
||||
- np.roll(tmp, -1, axis=2))
|
||||
dset += (numpy.roll(tmp, 1, axis=2) \
|
||||
- numpy.roll(tmp, -1, axis=2))
|
||||
else:
|
||||
tmp = self.__read_binary_data__('magz', chunk_number)
|
||||
dset = (np.roll(tmp, 1, axis=1) \
|
||||
- np.roll(tmp, -1, axis=1))
|
||||
dset = (numpy.roll(tmp, 1, axis=1) \
|
||||
- numpy.roll(tmp, -1, axis=1))
|
||||
|
||||
dset *= 0.5
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
@ -735,18 +735,18 @@ class Amun:
|
||||
elif dataset == 'curz':
|
||||
if self.attributes['ndims'] == 3:
|
||||
tmp = self.__read_binary_data__('magx', chunk_number)
|
||||
dset = (np.roll(tmp, 1, axis=1) \
|
||||
- np.roll(tmp, -1, axis=1))
|
||||
dset = (numpy.roll(tmp, 1, axis=1) \
|
||||
- numpy.roll(tmp, -1, axis=1))
|
||||
tmp = self.__read_binary_data__('magy', chunk_number)
|
||||
dset += (np.roll(tmp, -1, axis=2) \
|
||||
- np.roll(tmp, 1, axis=2))
|
||||
dset += (numpy.roll(tmp, -1, axis=2) \
|
||||
- numpy.roll(tmp, 1, axis=2))
|
||||
else:
|
||||
tmp = self.__read_binary_data__('magx', chunk_number)
|
||||
dset = (np.roll(tmp, 1, axis=0) \
|
||||
- np.roll(tmp, -1, axis=0))
|
||||
dset = (numpy.roll(tmp, 1, axis=0) \
|
||||
- numpy.roll(tmp, -1, axis=0))
|
||||
tmp = self.__read_binary_data__('magy', chunk_number)
|
||||
dset += (np.roll(tmp, -1, axis=1) \
|
||||
- np.roll(tmp, 1, axis=1))
|
||||
dset += (numpy.roll(tmp, -1, axis=1) \
|
||||
- numpy.roll(tmp, 1, axis=1))
|
||||
|
||||
dset *= 0.5
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
@ -754,32 +754,32 @@ class Amun:
|
||||
elif dataset == 'jvec':
|
||||
if self.attributes['ndims'] == 3:
|
||||
tmp = self.__read_binary_data__('magx', chunk_number)
|
||||
wy = (np.roll(tmp, -1, axis=0) \
|
||||
- np.roll(tmp, 1, axis=0))
|
||||
wz = (np.roll(tmp, 1, axis=1) \
|
||||
- np.roll(tmp, -1, axis=1))
|
||||
wy = (numpy.roll(tmp, -1, axis=0) \
|
||||
- numpy.roll(tmp, 1, axis=0))
|
||||
wz = (numpy.roll(tmp, 1, axis=1) \
|
||||
- numpy.roll(tmp, -1, axis=1))
|
||||
tmp = self.__read_binary_data__('magy', chunk_number)
|
||||
wz += (np.roll(tmp, -1, axis=2) \
|
||||
- np.roll(tmp, 1, axis=2))
|
||||
wx = (np.roll(tmp, 1, axis=0) \
|
||||
- np.roll(tmp, -1, axis=0))
|
||||
wz += (numpy.roll(tmp, -1, axis=2) \
|
||||
- numpy.roll(tmp, 1, axis=2))
|
||||
wx = (numpy.roll(tmp, 1, axis=0) \
|
||||
- numpy.roll(tmp, -1, axis=0))
|
||||
tmp = self.__read_binary_data__('magz', chunk_number)
|
||||
wx += (np.roll(tmp, -1, axis=1) \
|
||||
- np.roll(tmp, 1, axis=1))
|
||||
wy += (np.roll(tmp, 1, axis=2) \
|
||||
- np.roll(tmp, -1, axis=2))
|
||||
wx += (numpy.roll(tmp, -1, axis=1) \
|
||||
- numpy.roll(tmp, 1, axis=1))
|
||||
wy += (numpy.roll(tmp, 1, axis=2) \
|
||||
- numpy.roll(tmp, -1, axis=2))
|
||||
else:
|
||||
tmp = self.__read_binary_data__('magx', chunk_number)
|
||||
wz = (np.roll(tmp, 1, axis=0) \
|
||||
- np.roll(tmp, -1, axis=0))
|
||||
wz = (numpy.roll(tmp, 1, axis=0) \
|
||||
- numpy.roll(tmp, -1, axis=0))
|
||||
tmp = self.__read_binary_data__('magy', chunk_number)
|
||||
wz += (np.roll(tmp, -1, axis=1) \
|
||||
- np.roll(tmp, 1, axis=1))
|
||||
wz += (numpy.roll(tmp, -1, axis=1) \
|
||||
- numpy.roll(tmp, 1, axis=1))
|
||||
tmp = self.__read_binary_data__('magz', chunk_number)
|
||||
wx = (np.roll(tmp, -1, axis=0) \
|
||||
- np.roll(tmp, 1, axis=0))
|
||||
wy = (np.roll(tmp, 1, axis=1) \
|
||||
- np.roll(tmp, -1, axis=1))
|
||||
wx = (numpy.roll(tmp, -1, axis=0) \
|
||||
- numpy.roll(tmp, 1, axis=0))
|
||||
wy = (numpy.roll(tmp, 1, axis=1) \
|
||||
- numpy.roll(tmp, -1, axis=1))
|
||||
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
h = 2 * self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
@ -791,47 +791,47 @@ class Amun:
|
||||
elif dataset == 'curr':
|
||||
if self.attributes['ndims'] == 3:
|
||||
tmp = self.__read_binary_data__('magx', chunk_number)
|
||||
wy = (np.roll(tmp, -1, axis=0) \
|
||||
- np.roll(tmp, 1, axis=0))
|
||||
wz = (np.roll(tmp, 1, axis=1) \
|
||||
- np.roll(tmp, -1, axis=1))
|
||||
wy = (numpy.roll(tmp, -1, axis=0) \
|
||||
- numpy.roll(tmp, 1, axis=0))
|
||||
wz = (numpy.roll(tmp, 1, axis=1) \
|
||||
- numpy.roll(tmp, -1, axis=1))
|
||||
tmp = self.__read_binary_data__('magy', chunk_number)
|
||||
wz += (np.roll(tmp, -1, axis=2) \
|
||||
- np.roll(tmp, 1, axis=2))
|
||||
wx = (np.roll(tmp, 1, axis=0) \
|
||||
- np.roll(tmp, -1, axis=0))
|
||||
wz += (numpy.roll(tmp, -1, axis=2) \
|
||||
- numpy.roll(tmp, 1, axis=2))
|
||||
wx = (numpy.roll(tmp, 1, axis=0) \
|
||||
- numpy.roll(tmp, -1, axis=0))
|
||||
tmp = self.__read_binary_data__('magz', chunk_number)
|
||||
wx += (np.roll(tmp, -1, axis=1) \
|
||||
- np.roll(tmp, 1, axis=1))
|
||||
wy += (np.roll(tmp, 1, axis=2) \
|
||||
- np.roll(tmp, -1, axis=2))
|
||||
wx += (numpy.roll(tmp, -1, axis=1) \
|
||||
- numpy.roll(tmp, 1, axis=1))
|
||||
wy += (numpy.roll(tmp, 1, axis=2) \
|
||||
- numpy.roll(tmp, -1, axis=2))
|
||||
else:
|
||||
tmp = self.__read_binary_data__('magx', chunk_number)
|
||||
wz = (np.roll(tmp, 1, axis=0) \
|
||||
- np.roll(tmp, -1, axis=0))
|
||||
wz = (numpy.roll(tmp, 1, axis=0) \
|
||||
- numpy.roll(tmp, -1, axis=0))
|
||||
tmp = self.__read_binary_data__('magy', chunk_number)
|
||||
wz += (np.roll(tmp, -1, axis=1) \
|
||||
- np.roll(tmp, 1, axis=1))
|
||||
wz += (numpy.roll(tmp, -1, axis=1) \
|
||||
- numpy.roll(tmp, 1, axis=1))
|
||||
tmp = self.__read_binary_data__('magz', chunk_number)
|
||||
wx = (np.roll(tmp, -1, axis=0) \
|
||||
- np.roll(tmp, 1, axis=0))
|
||||
wy = (np.roll(tmp, 1, axis=1) \
|
||||
- np.roll(tmp, -1, axis=1))
|
||||
wx = (numpy.roll(tmp, -1, axis=0) \
|
||||
- numpy.roll(tmp, 1, axis=0))
|
||||
wy = (numpy.roll(tmp, 1, axis=1) \
|
||||
- numpy.roll(tmp, -1, axis=1))
|
||||
|
||||
dset = 0.5 * np.sqrt(wx**2 + wy**2 + wz**2)
|
||||
dset = 0.5 * numpy.sqrt(wx**2 + wy**2 + wz**2)
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
dset[...,p] /= self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
elif dataset == 'dbxdx':
|
||||
p = self.attributes['ndims'] - 1
|
||||
tmp = self.__read_binary_data__('magx', chunk_number)
|
||||
dset = np.roll(tmp, -1, axis=p) - np.roll(tmp, 1, axis=p)
|
||||
dset = numpy.roll(tmp, -1, axis=p) - numpy.roll(tmp, 1, axis=p)
|
||||
dset *= 0.5
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
dset[...,p] /= self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
elif dataset == 'dbxdy':
|
||||
p = self.attributes['ndims'] - 2
|
||||
tmp = self.__read_binary_data__('magx', chunk_number)
|
||||
dset = np.roll(tmp, -1, axis=p) - np.roll(tmp, 1, axis=p)
|
||||
dset = numpy.roll(tmp, -1, axis=p) - numpy.roll(tmp, 1, axis=p)
|
||||
dset *= 0.5
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
dset[...,p] /= self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
@ -839,23 +839,23 @@ class Amun:
|
||||
p = self.attributes['ndims'] - 3
|
||||
tmp = self.__read_binary_data__('magx', chunk_number)
|
||||
if p >= 0:
|
||||
dset = np.roll(tmp, -1, axis=p) - np.roll(tmp, 1, axis=p)
|
||||
dset = numpy.roll(tmp, -1, axis=p) - numpy.roll(tmp, 1, axis=p)
|
||||
dset *= 0.5
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
dset[...,p] /= self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
else:
|
||||
dset = np.zeros_like(tmp)
|
||||
dset = numpy.zeros_like(tmp)
|
||||
elif dataset == 'dbydx':
|
||||
p = self.attributes['ndims'] - 1
|
||||
tmp = self.__read_binary_data__('magy', chunk_number)
|
||||
dset = np.roll(tmp, -1, axis=p) - np.roll(tmp, 1, axis=p)
|
||||
dset = numpy.roll(tmp, -1, axis=p) - numpy.roll(tmp, 1, axis=p)
|
||||
dset *= 0.5
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
dset[...,p] /= self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
elif dataset == 'dbydy':
|
||||
p = self.attributes['ndims'] - 2
|
||||
tmp = self.__read_binary_data__('magy', chunk_number)
|
||||
dset = np.roll(tmp, -1, axis=p) - np.roll(tmp, 1, axis=p)
|
||||
dset = numpy.roll(tmp, -1, axis=p) - numpy.roll(tmp, 1, axis=p)
|
||||
dset *= 0.5
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
dset[...,p] /= self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
@ -863,23 +863,23 @@ class Amun:
|
||||
p = self.attributes['ndims'] - 3
|
||||
tmp = self.__read_binary_data__('magy', chunk_number)
|
||||
if p >= 0:
|
||||
dset = np.roll(tmp, -1, axis=p) - np.roll(tmp, 1, axis=p)
|
||||
dset = numpy.roll(tmp, -1, axis=p) - numpy.roll(tmp, 1, axis=p)
|
||||
dset *= 0.5
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
dset[...,p] /= self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
else:
|
||||
dset = np.zeros_like(tmp)
|
||||
dset = numpy.zeros_like(tmp)
|
||||
elif dataset == 'dbzdx':
|
||||
p = self.attributes['ndims'] - 1
|
||||
tmp = self.__read_binary_data__('magz', chunk_number)
|
||||
dset = np.roll(tmp, -1, axis=p) - np.roll(tmp, 1, axis=p)
|
||||
dset = numpy.roll(tmp, -1, axis=p) - numpy.roll(tmp, 1, axis=p)
|
||||
dset *= 0.5
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
dset[...,p] /= self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
elif dataset == 'dbzdy':
|
||||
p = self.attributes['ndims'] - 2
|
||||
tmp = self.__read_binary_data__('magz', chunk_number)
|
||||
dset = np.roll(tmp, -1, axis=p) - np.roll(tmp, 1, axis=p)
|
||||
dset = numpy.roll(tmp, -1, axis=p) - numpy.roll(tmp, 1, axis=p)
|
||||
dset *= 0.5
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
dset[...,p] /= self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
@ -887,12 +887,12 @@ class Amun:
|
||||
p = self.attributes['ndims'] - 3
|
||||
tmp = self.__read_binary_data__('magz', chunk_number)
|
||||
if p >= 0:
|
||||
dset = np.roll(tmp, -1, axis=p) - np.roll(tmp, 1, axis=p)
|
||||
dset = numpy.roll(tmp, -1, axis=p) - numpy.roll(tmp, 1, axis=p)
|
||||
dset *= 0.5
|
||||
for p in range(self.chunks[chunk_number]['dblocks']):
|
||||
dset[...,p] /= self.cell_size[self.chunks[chunk_number]['levels'][p]]
|
||||
else:
|
||||
dset = np.zeros_like(tmp)
|
||||
dset = numpy.zeros_like(tmp)
|
||||
else:
|
||||
dset = self.__read_binary_data__(dataset, chunk_number)
|
||||
|
||||
@ -906,8 +906,7 @@ class Amun:
|
||||
the uniform mesh.
|
||||
"""
|
||||
from .interpolation import interpolate
|
||||
import numpy as np
|
||||
import sys
|
||||
import numpy, sys
|
||||
|
||||
if self.dataformat == None:
|
||||
raise Exception("Snapshot object has not been properly initialized!")
|
||||
@ -915,26 +914,26 @@ class Amun:
|
||||
if not dataset_name in self.variables:
|
||||
raise Exception("Dataset '{}' is not available!\nAvailable datasets: {}\n".format(dataset_name, list(self.variables.keys())))
|
||||
|
||||
dlo = np.array([self.attributes['xmin'], self.attributes['ymin']])
|
||||
dup = np.array([self.attributes['xmax'], self.attributes['ymax']])
|
||||
dln = np.array([self.attributes['xlen'], self.attributes['ylen']])
|
||||
dlo = numpy.array([self.attributes['xmin'], self.attributes['ymin']])
|
||||
dup = numpy.array([self.attributes['xmax'], self.attributes['ymax']])
|
||||
dln = numpy.array([self.attributes['xlen'], self.attributes['ylen']])
|
||||
if self.attributes['ndims'] == 3:
|
||||
dlo = np.append(dlo, self.attributes['zmin'])
|
||||
dup = np.append(dup, self.attributes['zmax'])
|
||||
dln = np.append(dln, self.attributes['zlen'])
|
||||
dlo = numpy.append(dlo, self.attributes['zmin'])
|
||||
dup = numpy.append(dup, self.attributes['zmax'])
|
||||
dln = numpy.append(dln, self.attributes['zlen'])
|
||||
|
||||
slo = np.array(dlo)
|
||||
sup = np.array(dup)
|
||||
slo = numpy.array(dlo)
|
||||
sup = numpy.array(dup)
|
||||
if extent != None:
|
||||
if len(extent) != 2 * self.attributes['ndims']:
|
||||
raise Exception("Wrong dimensions of the argument 'extent'!")
|
||||
slo = np.array(extent)[0::2]
|
||||
sup = np.array(extent)[1::2]
|
||||
slo = numpy.array(extent)[0::2]
|
||||
sup = numpy.array(extent)[1::2]
|
||||
if any(slo > dup) or any(sup < dlo) or any (slo >= sup):
|
||||
raise Exception("Wrong order of the dimensions in the argument 'extent'!")
|
||||
|
||||
if maxlev != None:
|
||||
if isinstance(maxlev, (int, np.int32)):
|
||||
if isinstance(maxlev, (int, numpy.int32)):
|
||||
if 1 <= maxlev <= self.attributes['maxlev']:
|
||||
shrink = 2**(self.attributes['maxlev']-maxlev)
|
||||
elif maxlev > self.attributes['maxlev']:
|
||||
@ -942,21 +941,21 @@ class Amun:
|
||||
else:
|
||||
raise Exception("Argument 'maxlev' must be an integer between 1 and {}.\n".format(self.attributes['maxlev']))
|
||||
|
||||
bm = np.array([ self.attributes['ncells'] ]*self.attributes['ndims'])
|
||||
bm = numpy.array([ self.attributes['ncells'] ]*self.attributes['ndims'])
|
||||
|
||||
if self.attributes['ndims'] == 3:
|
||||
rm = np.array([self.attributes['zblocks'], self.attributes['yblocks'], self.attributes['xblocks']])
|
||||
rm = numpy.array([self.attributes['zblocks'], self.attributes['yblocks'], self.attributes['xblocks']])
|
||||
else:
|
||||
rm = np.array([self.attributes['yblocks'], self.attributes['xblocks']])
|
||||
rm = numpy.array([self.attributes['yblocks'], self.attributes['xblocks']])
|
||||
|
||||
dm = rm * self.attributes['ncells'] * 2**(self.attributes['toplev'] - 1) // shrink
|
||||
ll = np.array(np.floor(dm[::-1] * (slo - dlo) / dln), dtype='int')
|
||||
uu = np.array( np.ceil(dm[::-1] * (sup - dlo) / dln), dtype='int')
|
||||
ll = numpy.array(numpy.floor(dm[::-1] * (slo - dlo) / dln), dtype='int')
|
||||
uu = numpy.array( numpy.ceil(dm[::-1] * (sup - dlo) / dln), dtype='int')
|
||||
dm = (uu - ll)[::-1]
|
||||
if dataset_name in [ 'velocity', 'vorticity', 'magnetic field', 'current density', 'electric field']:
|
||||
arr = [ np.zeros(dm[:]), np.zeros(dm[:]), np.zeros(dm[:]) ]
|
||||
arr = [ numpy.zeros(dm[:]), numpy.zeros(dm[:]), numpy.zeros(dm[:]) ]
|
||||
else:
|
||||
arr = np.zeros(dm[:])
|
||||
arr = numpy.zeros(dm[:])
|
||||
|
||||
if progress:
|
||||
sys.stdout.write("Snapshot's path:\n '{}'\n".format(self.path))
|
||||
@ -981,8 +980,8 @@ class Amun:
|
||||
if all(iu[:] > ll[:]) and all(il[:] < uu[:]):
|
||||
nb = il[:] - ll[:]
|
||||
ne = iu[:] - ll[:]
|
||||
ib = np.maximum(nb[:], 0)
|
||||
ie = np.minimum(ne[:], uu[:] - ll[:])
|
||||
ib = numpy.maximum(nb[:], 0)
|
||||
ie = numpy.minimum(ne[:], uu[:] - ll[:])
|
||||
jb = ib[:] - nb[:]
|
||||
je = ie[:] - ne[:] + cm[:]
|
||||
|
||||
@ -1016,10 +1015,9 @@ class Amun:
|
||||
"""
|
||||
Function converts dataset of the requested variable to AMR VTK file.
|
||||
"""
|
||||
import numpy, os, sys
|
||||
from .octree import OcBase, OcNode
|
||||
from .vtkio import WriteVTK
|
||||
import numpy as np
|
||||
import os, sys
|
||||
|
||||
if self.dataformat == None:
|
||||
raise Exception("Snapshot object has not been properly initialized!")
|
||||
@ -1078,12 +1076,12 @@ class Amun:
|
||||
if progress:
|
||||
sys.stdout.write("Generating OverlappingAMR VTK files\n")
|
||||
|
||||
bm = np.array([ self.attributes['ncells'] ]*self.attributes['ndims'])
|
||||
bm = numpy.array([ self.attributes['ncells'] ]*self.attributes['ndims'])
|
||||
|
||||
if self.attributes['ndims'] == 3:
|
||||
rm = np.array([self.attributes['zblocks'], self.attributes['yblocks'], self.attributes['xblocks']])
|
||||
rm = numpy.array([self.attributes['zblocks'], self.attributes['yblocks'], self.attributes['xblocks']])
|
||||
else:
|
||||
rm = np.array([self.attributes['yblocks'], self.attributes['xblocks']])
|
||||
rm = numpy.array([self.attributes['yblocks'], self.attributes['xblocks']])
|
||||
|
||||
ofile = "{}_{:06d}.vthb".format(dataset_name, self.attributes['isnap'])
|
||||
opath = "{}_{:06d}".format(dataset_name, self.attributes['isnap'])
|
||||
@ -1109,9 +1107,9 @@ class Amun:
|
||||
|
||||
no = 0
|
||||
for item in base.getNodesFromLevel(lv):
|
||||
lo = np.array(item.index) * bm
|
||||
lo = numpy.array(item.index) * bm
|
||||
up = lo + bm - 1
|
||||
ll = np.stack((lo,up)).T.flatten()
|
||||
ll = numpy.stack((lo,up)).T.flatten()
|
||||
if item.hasData:
|
||||
vfile = os.path.join(opath, fmt.format(dataset_name, lv, no))
|
||||
WriteVTK(vfile, label, item.data, \
|
||||
|
@ -29,7 +29,6 @@
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
"""
|
||||
import numpy as np
|
||||
try:
|
||||
from scipy.ndimage import zoom
|
||||
from scipy.interpolate import splrep, splev, interp1d, pchip_interpolate
|
||||
@ -43,6 +42,8 @@ def rebin(a, newshape):
|
||||
Subroutine changes the size of the input array to to new shape,
|
||||
by copying cells or averaging them.
|
||||
'''
|
||||
import numpy
|
||||
|
||||
assert len(a.shape) == len(newshape)
|
||||
|
||||
m = a.ndim - 1
|
||||
@ -58,7 +59,7 @@ def rebin(a, newshape):
|
||||
return a.reshape(nn).mean(3).mean(1)
|
||||
else:
|
||||
for n in range(a.ndim):
|
||||
a = np.repeat(a, newshape[n] // a.shape[n], axis=n)
|
||||
a = numpy.repeat(a, newshape[n] // a.shape[n], axis=n)
|
||||
return(a)
|
||||
|
||||
|
||||
@ -66,6 +67,8 @@ def interpolate(a, newshape, nghosts=0, method=None, order=1):
|
||||
'''
|
||||
Subroutine rescales the block by interpolating its values.
|
||||
'''
|
||||
import numpy
|
||||
|
||||
if method == None or method == 'rebin' or not scipy_available:
|
||||
|
||||
ng = nghosts
|
||||
@ -85,48 +88,48 @@ def interpolate(a, newshape, nghosts=0, method=None, order=1):
|
||||
|
||||
elif method in [ 'monotonic', 'pchip' ]:
|
||||
|
||||
dims = np.arange(a.ndim)
|
||||
dims = numpy.arange(a.ndim)
|
||||
q = a
|
||||
|
||||
for n in dims:
|
||||
|
||||
d2 = np.roll(q,-1, axis=0) + np.roll(q, 1, axis=0) - 2.0 * q
|
||||
d2 = numpy.roll(q,-1, axis=0) + numpy.roll(q, 1, axis=0) - 2.0 * q
|
||||
q = q - d2 / 24.0
|
||||
|
||||
d = np.array(q.shape)
|
||||
d = numpy.array(q.shape)
|
||||
|
||||
xo = (np.arange(0.5, a.shape[n]) - nghosts) / (a.shape[n] - 2 * nghosts)
|
||||
xn = np.arange(0.5, newshape[n]) / newshape[n]
|
||||
xo = (numpy.arange(0.5, a.shape[n]) - nghosts) / (a.shape[n] - 2 * nghosts)
|
||||
xn = numpy.arange(0.5, newshape[n]) / newshape[n]
|
||||
|
||||
u = q.reshape([d[0], q.size // d[0]])
|
||||
f = np.zeros([newshape[n], q.size // d[0]])
|
||||
f = numpy.zeros([newshape[n], q.size // d[0]])
|
||||
for i in range(q.size // d[0]):
|
||||
f[:,i] = pchip_interpolate(xo, u[:,i], xn)
|
||||
|
||||
d[0] = newshape[n]
|
||||
f = f.reshape(d)
|
||||
|
||||
q = f.transpose(np.roll(dims, -1))
|
||||
q = f.transpose(numpy.roll(dims, -1))
|
||||
|
||||
return q
|
||||
|
||||
elif method == 'spline':
|
||||
|
||||
dims = np.arange(a.ndim)
|
||||
dims = numpy.arange(a.ndim)
|
||||
q = a
|
||||
|
||||
for n in dims:
|
||||
|
||||
d2 = np.roll(q,-1, axis=0) + np.roll(q, 1, axis=0) - 2.0 * q
|
||||
d2 = numpy.roll(q,-1, axis=0) + numpy.roll(q, 1, axis=0) - 2.0 * q
|
||||
q = q - d2 / 24.0
|
||||
|
||||
d = np.array(q.shape)
|
||||
d = numpy.array(q.shape)
|
||||
|
||||
xo = (np.arange(0.5, a.shape[n]) - nghosts) / (a.shape[n] - 2 * nghosts)
|
||||
xn = np.arange(0.5, newshape[n]) / newshape[n]
|
||||
xo = (numpy.arange(0.5, a.shape[n]) - nghosts) / (a.shape[n] - 2 * nghosts)
|
||||
xn = numpy.arange(0.5, newshape[n]) / newshape[n]
|
||||
|
||||
u = q.reshape([d[0], q.size // d[0]])
|
||||
f = np.zeros([newshape[n], q.size // d[0]])
|
||||
f = numpy.zeros([newshape[n], q.size // d[0]])
|
||||
for i in range(q.size // d[0]):
|
||||
t = splrep(xo, u[:,i], k=5, s=0.0)
|
||||
f[:,i] = splev(xn, t)
|
||||
@ -134,27 +137,27 @@ def interpolate(a, newshape, nghosts=0, method=None, order=1):
|
||||
d[0] = newshape[n]
|
||||
f = f.reshape(d)
|
||||
|
||||
q = f.transpose(np.roll(dims, -1))
|
||||
q = f.transpose(numpy.roll(dims, -1))
|
||||
|
||||
return q
|
||||
|
||||
else:
|
||||
|
||||
dims = np.arange(a.ndim)
|
||||
dims = numpy.arange(a.ndim)
|
||||
q = a
|
||||
|
||||
for n in dims:
|
||||
|
||||
d2 = np.roll(q,-1, axis=0) + np.roll(q, 1, axis=0) - 2.0 * q
|
||||
d2 = numpy.roll(q,-1, axis=0) + numpy.roll(q, 1, axis=0) - 2.0 * q
|
||||
q = q - d2 / 24.0
|
||||
|
||||
d = np.array(q.shape)
|
||||
d = numpy.array(q.shape)
|
||||
|
||||
xo = (np.arange(0.5, a.shape[n]) - nghosts) / (a.shape[n] - 2 * nghosts)
|
||||
xn = np.arange(0.5, newshape[n]) / newshape[n]
|
||||
xo = (numpy.arange(0.5, a.shape[n]) - nghosts) / (a.shape[n] - 2 * nghosts)
|
||||
xn = numpy.arange(0.5, newshape[n]) / newshape[n]
|
||||
|
||||
u = q.reshape([d[0], q.size // d[0]])
|
||||
f = np.zeros([newshape[n], q.size // d[0]])
|
||||
f = numpy.zeros([newshape[n], q.size // d[0]])
|
||||
for i in range(q.size // d[0]):
|
||||
t = interp1d(xo, u[:,i], kind=method)
|
||||
f[:,i] = t(xn)
|
||||
@ -162,6 +165,6 @@ def interpolate(a, newshape, nghosts=0, method=None, order=1):
|
||||
d[0] = newshape[n]
|
||||
f = f.reshape(d)
|
||||
|
||||
q = f.transpose(np.roll(dims, -1))
|
||||
q = f.transpose(numpy.roll(dims, -1))
|
||||
|
||||
return q
|
||||
|
@ -176,7 +176,7 @@ class OcNode(object):
|
||||
''' Function populates all nodes at lower levels with data from higher levels '''
|
||||
def populateNodeData(self):
|
||||
from .interpolation import rebin
|
||||
import numpy as np
|
||||
import numpy
|
||||
|
||||
if not self.isLeaf:
|
||||
for n in range(len(self.children)):
|
||||
@ -191,7 +191,7 @@ class OcNode(object):
|
||||
bm = comp.shape
|
||||
dm = [ 2 * d for d in bm ]
|
||||
|
||||
arr = np.zeros(dm, dtype=comp.dtype)
|
||||
arr = numpy.zeros(dm, dtype=comp.dtype)
|
||||
|
||||
for k, j, i in itertools.product(range(2), range(2), range(2)):
|
||||
n = (k * 2 + j) * 2 + i
|
||||
@ -206,7 +206,7 @@ class OcNode(object):
|
||||
bm = self.children[0].data.shape
|
||||
dm = [ 2 * d for d in bm ]
|
||||
|
||||
arr = np.zeros(dm, dtype=self.children[0].data.dtype)
|
||||
arr = numpy.zeros(dm, dtype=self.children[0].data.dtype)
|
||||
|
||||
for k, j, i in itertools.product(range(2), range(2), range(2)):
|
||||
n = (k * 2 + j) * 2 + i
|
||||
|
Loading…
x
Reference in New Issue
Block a user