EVOLUTION: Implement 3rd order Runge-Kutta temporal integraiton.

Signed-off-by: Grzegorz Kowal <grzegorz@amuncode.org>
This commit is contained in:
Grzegorz Kowal 2014-08-19 20:50:49 -03:00
parent fdf1274b28
commit d59a5be1fc

View File

@ -135,6 +135,11 @@ module evolution
name_int = "2nd order Runge-Kutta method"
evolve => evolve_rk2
case ("rk3", "RK3")
name_int = "3rd order Runge-Kutta method"
evolve => evolve_rk3
case default
if (verbose) then
@ -491,6 +496,11 @@ module evolution
! Subroutine advances the solution by one time step using the 2nd order
! Runge-Kutta time integration method.
!
! References:
!
! [1] Press, W. H, Teukolsky, S. A., Vetterling, W. T., Flannery, B. P.,
! "Numerical Recipes in Fortran",
! Cambridge University Press, Cambridge, 1992
!
!===============================================================================
!
@ -610,6 +620,200 @@ module evolution
!
!===============================================================================
!
! subroutine EVOLVE_RK3:
! ---------------------
!
! Subroutine advances the solution by one time step using the 3rd order
! Runge-Kutta time integration method.
!
! References:
!
! [1] Press, W. H, Teukolsky, S. A., Vetterling, W. T., Flannery, B. P.,
! "Numerical Recipes in Fortran",
! Cambridge University Press, Cambridge, 1992
!
!
!===============================================================================
!
subroutine evolve_rk3()
! include external procedures
!
use boundaries , only : boundary_variables
use sources , only : update_sources
! include external variables
!
use blocks , only : block_data, list_data
use coordinates , only : im, jm, km
use equations , only : nv, ibp
! local variables are not implicit by default
!
implicit none
! local pointers
!
type(block_data), pointer :: pblock
! local variables
!
real(kind=8) :: ds
! local arrays
!
real(kind=8), dimension(nv,im,jm,km) :: du
! local integration parameters
!
real(kind=8), parameter :: f21 = 3.0d+00 / 4.0d+00, f22 = 1.0d+00 / 4.0d+00
real(kind=8), parameter :: f31 = 1.0d+00 / 3.0d+00, f32 = 2.0d+00 / 3.0d+00
!
!-------------------------------------------------------------------------------
!
!! 1st substep of integration
!!
! prepare fractional time step
!
ds = dt
! update fluxes for the first step of the RK2 integration
!
call update_fluxes()
! update the solution using numerical fluxes stored in the data blocks
!
pblock => list_data
do while (associated(pblock))
! calculate variable increment for the current block
!
call update_increment(pblock, du(:,:,:,:))
! add source terms
!
call update_sources(pblock, du(:,:,:,:))
! update the solution for the fluid variables
!
pblock%u1(1:nv,:,:,:) = pblock%u0(1:nv,:,:,:) + ds * du(1:nv,:,:,:)
! update the conservative variable pointer
!
pblock%u => pblock%u1
! assign pointer to the next block
!
pblock => pblock%next
end do
! update primitive variables
!
call update_variables()
! update boundaries
!
call boundary_variables()
!! 2nd substep of integration
!!
! prepare fractional time step
!
ds = f22 * dt
! update fluxes for the first step of the RK2 integration
!
call update_fluxes()
! update the solution using numerical fluxes stored in the data blocks
!
pblock => list_data
do while (associated(pblock))
! calculate variable increment for the current block
!
call update_increment(pblock, du(:,:,:,:))
! add source terms
!
call update_sources(pblock, du(:,:,:,:))
! update the solution for the fluid variables
!
pblock%u1(1:nv,:,:,:) = f21 * pblock%u0(1:nv,:,:,:) &
+ f22 * pblock%u1(1:nv,:,:,:) + ds * du(1:nv,:,:,:)
! assign pointer to the next block
!
pblock => pblock%next
end do
! update primitive variables
!
call update_variables()
! update boundaries
!
call boundary_variables()
!! 3rd substep of integration
!!
! prepare fractional time step
!
ds = f32 * dt
! update fluxes for the second step of the RK2 integration
!
call update_fluxes()
! update the solution using numerical fluxes stored in the data blocks
!
pblock => list_data
do while (associated(pblock))
! calculate variable increment for the current block
!
call update_increment(pblock, du(:,:,:,:))
! add source terms
!
call update_sources(pblock, du(:,:,:,:))
! update the solution for the fluid variables
!
pblock%u0(1:nv,:,:,:) = f31 * pblock%u0(1:nv,:,:,:) &
+ f32 * pblock%u1(1:nv,:,:,:) + ds * du(1:nv,:,:,:)
! update the conservative variable pointer
!
pblock%u => pblock%u0
! update ψ by its source term
!
if (ibp > 0) pblock%u(ibp,:,:,:) = decay * pblock%u(ibp,:,:,:)
! assign pointer to the next block
!
pblock => pblock%next
end do
! update primitive variables
!
call update_variables()
! update boundaries
!
call boundary_variables()
!-------------------------------------------------------------------------------
!
end subroutine evolve_rk3
!
!===============================================================================
!
! subroutine UPDATE_FLUXES:
! ------------------------
!