Merge branch 'master' into reconnection

This commit is contained in:
Grzegorz Kowal 2018-01-11 09:27:50 -02:00
commit c7fb30839f
30 changed files with 894 additions and 105 deletions

View File

@ -1,6 +1,6 @@
--------------------------------------------------------------------------------
# **The AMUN Code**
## Copyright (C) 2008-2017 Grzegorz Kowal ##
## Copyright (C) 2008-2018 Grzegorz Kowal ##
--------------------------------------------------------------------------------
AMUN is a parallel code to perform numerical simulations in fluid approximation
@ -65,8 +65,9 @@ the HDF5 libraries have been installed.
Compilation
===========
1. Clone or unpack the code sources downloaded from
[Bitbucket](git@bitbucket.org:amunteam/amun-code.git).
1. Clone the AMUN source code: `git clone https://bitbucket.org/amunteam/amun-code.git`,
or unpack the archive downloaded from page
[Downloads](https://bitbucket.org/amunteam/amun-code/downloads/).
2. Go to directory **hosts/** and copy file **default** to a new file named
exactly as your host name (name returned by command `hostname`).
3. Customize your compiler and compilation options in your new host file.

View File

@ -1,7 +1,7 @@
# problem name and parameters
#
problem = "rt"
gamma = 1.4
problem = "rayleigh-taylor"
gamma = 1.4d+00
# random number generator parameters
#
@ -24,33 +24,33 @@ fix_positivity = "off"
# mesh parameters
#
xblocks = 1
yblocks = 3
yblocks = 2
xmin = -2.5d-01
xmax = 2.5d-01
ymin = -7.5d-01
ymax = 7.5d-01
zmin = -5.0d-01
zmax = 5.0d-01
ymin = -5.0d-01
ymax = 5.0d-01
# refinement control
#
ncells = 16
nghosts = 4
nghosts = 2
minlev = 1
maxlev = 6
maxlev = 5
crefmin = 1.0d-02
crefmax = 1.0d-01
# boundary conditions
#
xlbndry = "periodic"
xubndry = "periodic"
ylbndry = "reflecting"
yubndry = "reflecting"
ylbndry = "hydrostatic"
yubndry = "hydrostatic"
zlbndry = "periodic"
zubndry = "periodic"
# runtime control parameters
#
tmax = 1.0d+01
tmax = 3.0d+00
cfl = 3.0d-01
# data output control
@ -59,5 +59,4 @@ precise_snapshots = "on"
snapshot_type = "p"
snapshot_interval = 1.0d-01
restart_number = -1
integrals_interval = 10
generate_xdmf = "on"
integrals_interval = 10

62
problems/sedov-taylor.in Normal file
View File

@ -0,0 +1,62 @@
# problem name and parameters
#
problem = "sedov-taylor"
gamma = 1.4d+00
# physics
#
equation_system = "hd"
equation_of_state = "adi"
# methods
#
time_advance = "rk2"
riemann_solver = "hll"
reconstruction = "tvd"
limiter = "mc"
fix_positivity = "off"
clip_extrema = "off"
# mesh parameters
#
xmin = -5.00d-01
xmax = 5.00d-01
ymin = -5.00d-01
ymax = 5.00d-01
zmin = -5.00d-01
zmax = 5.00d-01
# refinement control
#
xblocks = 2
yblocks = 2
ncells = 16
nghosts = 4
minlev = 1
maxlev = 4
crefmin = 2.00d-01
crefmax = 8.00d-01
epsref = 1.00d-02
refinement_variables = "dens pres"
# boundary conditions
#
xlbndry = "periodic"
xubndry = "periodic"
ylbndry = "periodic"
yubndry = "periodic"
zlbndry = "periodic"
zubndry = "periodic"
# runtime control parameters
#
tmax = 2.00d-01
cfl = 4.00d-01
# data output control
#
precise_snapshots = "on"
snapshot_type = "p"
snapshot_interval = 1.0d-02
restart_number = -1
integrals_interval = 10

View File

@ -4,7 +4,7 @@
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2017 Grzegorz Kowal <grzegorz@amuncode.org>
!! Copyright (C) 2008-2018 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by
@ -130,15 +130,15 @@ module algebra
!
if (b(2) > 0.0d+00) then
tm = - bh - dr
x(1) = b(1) / tm
x(2) = tm / b(3)
else if (b(2) < 0.0d+00) then
tm = - bh + dr
x(1) = tm / b(3)
x(2) = b(1) / tm
else if (b(2) < 0.0d+00) then
tm = - bh + dr
x(1) = b(1) / tm
x(2) = tm / b(3)
else
x(1) = dr / b(3)
x(2) = - x(1)
x(2) = dr / b(3)
x(1) = - x(2)
end if
! update the number of roots
@ -303,15 +303,15 @@ module algebra
!
if (a(2) > 0.0d+00) then
tm = bh + dr
x(1) = - tm
x(2) = - a(1) / tm
else if (a(2) < 0.0d+00) then
tm = bh - dr
x(1) = - a(1) / tm
x(2) = - tm
else if (a(2) < 0.0d+00) then
tm = bh - dr
x(1) = - tm
x(2) = - a(1) / tm
else
x(1) = - dr
x(2) = dr
x(1) = dr
x(2) = - dr
end if
! update the number of roots

View File

@ -4,7 +4,7 @@
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2017 Grzegorz Kowal <grzegorz@amuncode.org>
!! Copyright (C) 2008-2018 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by

View File

@ -4,7 +4,7 @@
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2017 Grzegorz Kowal <grzegorz@amuncode.org>
!! Copyright (C) 2008-2018 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by

View File

@ -4,7 +4,7 @@
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2017 Grzegorz Kowal <grzegorz@amuncode.org>
!! Copyright (C) 2008-2018 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by

View File

@ -4,7 +4,7 @@
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2017 Grzegorz Kowal <grzegorz@amuncode.org>
!! Copyright (C) 2008-2018 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by

View File

@ -4,7 +4,7 @@
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2017 Grzegorz Kowal <grzegorz@amuncode.org>
!! Copyright (C) 2008-2018 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by

View File

@ -4,7 +4,7 @@
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2017 Grzegorz Kowal <grzegorz@amuncode.org>
!! Copyright (C) 2008-2018 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by
@ -122,7 +122,7 @@ program amun
character(len=80) :: fmt, tmp
real(kind=8) :: tbeg, thrs
real(kind=8) :: tm_curr, tm_exec, tm_conv
real(kind=8) :: tm_curr, tm_exec, tm_conv, tm_last = 0.0d+00
#ifdef INTEL
! the type of the function SIGNAL should be defined for Intel compiler
@ -203,7 +203,7 @@ program amun
write (*,"(1x,78('-'))")
write (*,"(1x,18('='),17x,a,17x,19('='))") 'A M U N'
write (*,"(1x,16('='),4x,a,4x,16('='))") &
'Copyright (C) 2008-2017 Grzegorz Kowal'
'Copyright (C) 2008-2018 Grzegorz Kowal'
write (*,"(1x,18('='),9x,a,9x,19('='))") &
'under GNU GPLv3 license'
write (*,"(1x,78('-'))")
@ -584,15 +584,15 @@ program amun
write(*,"(1x,a)" ) "Evolving the system:"
write(*,'(4x,a4,5x,a4,11x,a2,12x,a6,7x,a3)') 'step', 'time', 'dt' &
, 'blocks', 'ETA'
#if defined INTEL || defined PATHSCALE
#ifdef INTEL
write(*,'(i8,2(1x,1pe14.6),2x,i8,2x,1i4.1,"d",1i2.2,"h",1i2.2,"m"' // &
',1i2.2,"s",15x,a1,$)') &
step, time, dt, get_nleafs(), ed, eh, em, es, char(13)
#else /* INTEL | PATHSCALE */
#else /* INTEL */
write(*,'(i8,2(1x,1pe14.6),2x,i8,2x,1i4.1,"d",1i2.2,"h",1i2.2,"m"' // &
',1i2.2,"s",15x,a1)',advance="no") &
step, time, dt, get_nleafs(), ed, eh, em, es, char(13)
#endif /* INTEL | PATHSCALE */
#endif /* INTEL */
end if
@ -642,30 +642,36 @@ program amun
!
if (thrs > trun) iterm = 100
! print progress info to console
! print progress info to console, but not too often
!
if (master) then
if (time >= tmax .or. (tm_curr - tm_last) >= 1.0d+00) then
! calculate days, hours, seconds
!
ec = int(tm_curr * (tmax - time) / max(1.0d-08, time - tbeg), kind = 4)
es = max(0, int(mod(ec, 60)))
em = int(mod(ec / 60, 60))
eh = int(ec / 3600)
ed = int(eh / 24)
eh = int(mod(eh, 24))
ed = min(9999,ed)
ec = int(tm_curr * (tmax - time) / max(1.0d-08, time - tbeg), kind = 4)
es = max(0, int(mod(ec, 60)))
em = int(mod(ec / 60, 60))
eh = int(ec / 3600)
ed = int(eh / 24)
eh = int(mod(eh, 24))
ed = min(9999,ed)
#if defined INTEL || defined PATHSCALE
write(*,'(i8,2(1x,1pe14.6),2x,i8,2x,1i4.1,"d",1i2.2,"h",1i2.2,"m"' // &
',1i2.2,"s",15x,a1,$)') &
#ifdef INTEL
write(*,'(i8,2(1x,1pe14.6),2x,i8,2x,1i4.1,"d",1i2.2,"h",1i2.2,"m"' // &
',1i2.2,"s",15x,a1,$)') &
step, time, dt, get_nleafs(), ed, eh, em, es, char(13)
#else /* INTEL | PATHSCALE */
write(*,'(i8,2(1x,1pe14.6),2x,i8,2x,1i4.1,"d",1i2.2,"h",1i2.2,"m"' // &
',1i2.2,"s",15x,a1)',advance="no") &
#else /* INTEL */
write(*,'(i8,2(1x,1pe14.6),2x,i8,2x,1i4.1,"d",1i2.2,"h",1i2.2,"m"' // &
',1i2.2,"s",15x,a1)',advance="no") &
step, time, dt, get_nleafs(), ed, eh, em, es, char(13)
#endif /* INTEL | PATHSCALE */
#endif /* INTEL */
! update the timestamp
!
tm_last = tm_curr
end if
end if
! prepare iterm

View File

@ -4,7 +4,7 @@
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2017 Grzegorz Kowal <grzegorz@amuncode.org>
!! Copyright (C) 2008-2018 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by

View File

@ -4,7 +4,7 @@
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2017 Grzegorz Kowal <grzegorz@amuncode.org>
!! Copyright (C) 2008-2018 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by

View File

@ -4,7 +4,7 @@
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2017 Grzegorz Kowal <grzegorz@amuncode.org>
!! Copyright (C) 2008-2018 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by

View File

@ -4,7 +4,7 @@
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2017 Grzegorz Kowal <grzegorz@amuncode.org>
!! Copyright (C) 2008-2018 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by
@ -289,7 +289,7 @@ module gravity
! gravitational acceleration constant
!
logical , save :: first = .true.
real(kind=8), save :: gacc_const = -1.0d-01
real(kind=8), save :: gacc_const = -1.0d+00
!
!-------------------------------------------------------------------------------
!

View File

@ -4,7 +4,7 @@
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2017 Grzegorz Kowal <grzegorz@amuncode.org>
!! Copyright (C) 2008-2018 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by

View File

@ -4,7 +4,7 @@
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2017 Grzegorz Kowal <grzegorz@amuncode.org>
!! Copyright (C) 2008-2018 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by
@ -79,6 +79,10 @@ module interpolations
!
real(kind=8), save :: sgp = 9.0d+00
! PPM constant
!
real(kind=8), save :: ppm_const = 1.25d+00
! Gaussian process reconstruction coefficients vector
!
real(kind=8), dimension(:) , allocatable, save :: cgp
@ -179,6 +183,7 @@ module interpolations
call get_parameter_real ("limo3_rad" , rad )
call get_parameter_real ("kappa" , kappa )
call get_parameter_real ("kbeta" , kbeta )
call get_parameter_real ("ppm_const" , ppm_const )
call get_parameter_real ("cfl" , cfl )
! calculate κ = (1 - ν) / ν
@ -215,6 +220,13 @@ module interpolations
call print_warning("interpolations:initialize_interpolation" &
, "Increase the number of ghost cells (at least 2).")
eps = max(1.0d-12, eps)
case ("ppm", "PPM")
name_rec = "3rd order PPM"
interfaces => interfaces_dir
reconstruct_states => reconstruct_ppm
if (verbose .and. ng < 4) &
call print_warning("interpolations:initialize_interpolation" &
, "Increase the number of ghost cells (at least 4).")
case ("weno5z", "weno5-z", "WENO5Z", "WENO5-Z")
name_rec = "5th order WENO-Z (Borges et al. 2008)"
interfaces => interfaces_dir
@ -1648,6 +1660,200 @@ module interpolations
!
!===============================================================================
!
! subroutine RECONSTRUCT_PPM:
! --------------------------
!
! Subroutine reconstructs the interface states using the third order
! Piecewise Parabolic Method (PPM) with new limiters. This version lacks
! the support for flattening important for keeping the spurious oscillations
! near strong shocks/discontinuties under control.
!
! Arguments are described in subroutine reconstruct().
!
! References:
!
! [1] Colella, P., Woodward, P. R.,
! "The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations",
! Journal of Computational Physics, 1984, vol. 54, pp. 174-201,
! https://dx.doi.org/10.1016/0021-9991(84)90143-8
! [2] Colella, P., Sekora, M. D.,
! "A limiter for PPM that preserves accuracy at smooth extrema",
! Journal of Computational Physics, 2008, vol. 227, pp. 7069-7076,
! https://doi.org/10.1016/j.jcp.2008.03.034
!
!===============================================================================
!
subroutine reconstruct_ppm(n, h, f, fl, fr)
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
integer , intent(in) :: n
real(kind=8) , intent(in) :: h
real(kind=8), dimension(n), intent(in) :: f
real(kind=8), dimension(n), intent(out) :: fl, fr
! local variables
!
logical :: cm, cp, ext
integer :: i, im1, ip1, im2
real(kind=8) :: df2c, df2m, df2p, df2s, df2l
real(kind=8) :: dfm, dfp, dcm, dcp
real(kind=8) :: alm, alp, amx, sgn, del
! local arrays
!
real(kind=8), dimension(n) :: fi, df2
!
!-------------------------------------------------------------------------------
!
! calculate the high-order interface interpolation; eq. (16) in [2]
!
fi(1 ) = 5.0d-01 * (f(1 ) + f(2 ))
do i = 2, n - 2
fi(i) = (7.0d+00 * (f(i) + f(i+1)) - (f(i-1) + f(i+2))) / 1.2d+01
end do
fi(n-1) = 5.0d-01 * (f(n-1) + f(n ))
fi(n ) = f(n)
! calculate second-order central derivative
!
df2(1) = 0.0d+00
do i = 2, n - 1
df2(i) = (f(i+1) + f(i-1)) - 2.0d+00 * f(i)
end do
df2(n) = 0.0d+00
! limit the interpolation; eqs. (18) and (19) in [2]
!
do i = 2, n - 2
im1 = i - 1
ip1 = i + 1
if ((f(ip1) - fi(i)) * (fi(i) - f(i)) < 0.0d+00) then
df2c = 3.0d+00 * ((f(ip1) + f(i )) - 2.0d+00 * fi(i))
df2m = df2(i )
df2p = df2(ip1)
if (min(df2c, df2m, df2p) * max(df2c, df2m, df2p) > 0.0d+00) then
df2l = sign(min(ppm_const * min(abs(df2m), abs(df2p)), abs(df2c)), df2c)
else
df2l = 0.0d+00
end if
fi(i) = 5.0d-01 * (f(i) + f(ip1)) - df2l / 6.0d+00
end if
end do
! iterate along the vector
!
do i = 2, n - 1
im1 = i - 1
ip1 = i + 1
! limit states if local extremum is detected or the interpolation is not
! monotone
!
alm = fi(im1) - f(i)
alp = fi(i ) - f(i)
cm = abs(alm) >= 2.0d+00 * abs(alp)
cp = abs(alp) >= 2.0d+00 * abs(alm)
ext = .false.
! check if we have local extremum here
!
if (alm * alp > 0.0d+00) then
ext = .true.
else if (cm .or. cp) then
im2 = max(1, i - 1)
dfm = fi(im1) - fi(im2)
dfp = fi(ip1) - fi(i )
dcm = f (i ) - f (im1)
dcp = f (ip1) - f (i )
if (min(abs(dfm),abs(dfp)) >= min(abs(dcm),abs(dcp))) then
ext = dfm * dfp < 0.0d+00
else
ext = dcm * dcp < 0.0d+00
end if
end if
! limit states if the local extremum is detected
!
if (ext) then
df2s = 6.0d+00 * (alm + alp)
df2m = df2(im1)
df2c = df2(i )
df2p = df2(ip1)
if (min(df2s, df2c, df2m, df2p) &
* max(df2s, df2c, df2m, df2p) > 0.0d+00) then
df2l = sign(min(ppm_const * min(abs(df2m), abs(df2c), abs(df2p)) &
, abs(df2s)), df2s)
if (abs(df2l) > 0.0d+00) then
alm = alm * df2l / df2s
alp = alp * df2l / df2s
else
alm = 0.0d+00
alp = 0.0d+00
end if
else
alm = 0.0d+00
alp = 0.0d+00
end if
else
! the interpolation is not monotonic so apply additional limiter
!
if (cp) then
sgn = sign(1.0d+00, alp)
amx = - 2.5d-01 * alp**2 / (alp + alm)
dfp = f(ip1) - f(i)
if (sgn * amx >= sgn * dfp) then
del = dfp * (dfp - alm)
if (del >= 0.0d+00) then
alp = - 2.0d+00 * (dfp + sgn * sqrt(del))
else
alp = - 2.0d+00 * alm
end if
end if
end if
if (cm) then
sgn = sign(1.0d+00, alm)
amx = - 2.5d-01 * alm**2 / (alp + alm)
dfm = f(im1) - f(i)
if (sgn * amx >= sgn * dfm) then
del = dfm * (dfm - alp)
if (del >= 0.0d+00) then
alm = - 2.0d+00 * (dfm + sgn * sqrt(del))
else
alm = - 2.0d+00 * alp
end if
end if
end if
end if
! update the states
!
fr(im1) = f(i) + alm
fl(i ) = f(i) + alp
end do ! i = 2, n
! update the interpolation of the first and last points
!
fl(1 ) = fi(1)
fr(n-1) = fi(n)
fl(n ) = fi(n)
fr(n ) = f (n)
!-------------------------------------------------------------------------------
!
end subroutine reconstruct_ppm
!
!===============================================================================
!
! subroutine RECONSTRUCT_WENO5Z:
! -----------------------------
!

View File

@ -4,7 +4,7 @@
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2017 Grzegorz Kowal <grzegorz@amuncode.org>
!! Copyright (C) 2008-2018 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by
@ -1269,12 +1269,12 @@ module io
use coordinates , only : minlev, maxlev, toplev
use coordinates , only : nc, ng, in, jn, kn, ir, jr, kr
use coordinates , only : xmin, xmax, ymin, ymax, zmin, zmax
use equations , only : eqsys, eos
use equations , only : eqsys, eos, gamma, csnd
use error , only : print_error
use evolution , only : step, time, dt, dtn
use hdf5 , only : hid_t
use hdf5 , only : h5gcreate_f, h5gclose_f
use mpitools , only : nprocs, nproc
use mpitools , only : nprocs, nproc, periodic
use random , only : nseeds, get_seeds
! local variables are not implicit by default
@ -1290,12 +1290,21 @@ module io
integer(hid_t) :: gid
integer :: err
! local vectors
!
integer, dimension(3) :: per
! local allocatable arrays
!
integer(kind=4), dimension(:), allocatable :: seeds
!
!-------------------------------------------------------------------------------
!
! store the code name in order to determine the format of data
!
call write_attribute(fid, 'code' , 'AMUN')
call write_attribute(fid, 'version', 'v1.0')
! create a group to store the global attributes
!
call h5gcreate_f(fid, 'attributes', gid, err)
@ -1314,6 +1323,10 @@ module io
end if
! convert periodic(:) to an integer vector
!
per(:) = merge(1, 0, periodic(:))
! store string attributes
!
call write_attribute(gid, 'eqsys' , eqsys )
@ -1321,21 +1334,22 @@ module io
! store the integer attributes
!
call write_attribute(gid, 'ndims' , NDIMS )
call write_attribute(gid, 'last_id', get_last_id())
call write_attribute(gid, 'mblocks', get_mblocks())
call write_attribute(gid, 'dblocks', get_dblocks())
call write_attribute(gid, 'nleafs' , get_nleafs() )
call write_attribute(gid, 'ncells' , nc )
call write_attribute(gid, 'nghosts', ng )
call write_attribute(gid, 'minlev' , minlev )
call write_attribute(gid, 'maxlev' , maxlev )
call write_attribute(gid, 'toplev' , toplev )
call write_attribute(gid, 'nprocs' , nprocs )
call write_attribute(gid, 'nproc' , nproc )
call write_attribute(gid, 'nseeds' , nseeds )
call write_attribute(gid, 'step' , step )
call write_attribute(gid, 'isnap' , isnap )
call write_attribute(gid, 'ndims' , NDIMS )
call write_attribute(gid, 'last_id' , get_last_id())
call write_attribute(gid, 'mblocks' , get_mblocks())
call write_attribute(gid, 'dblocks' , get_dblocks())
call write_attribute(gid, 'nleafs' , get_nleafs() )
call write_attribute(gid, 'ncells' , nc )
call write_attribute(gid, 'nghosts' , ng )
call write_attribute(gid, 'minlev' , minlev )
call write_attribute(gid, 'maxlev' , maxlev )
call write_attribute(gid, 'toplev' , toplev )
call write_attribute(gid, 'nprocs' , nprocs )
call write_attribute(gid, 'nproc' , nproc )
call write_attribute(gid, 'nseeds' , nseeds )
call write_attribute(gid, 'step' , step )
call write_attribute(gid, 'isnap' , isnap )
call write_attribute(gid, 'periodic', per(:) )
! store the real attributes
!
@ -1348,6 +1362,12 @@ module io
call write_attribute(gid, 'time', time)
call write_attribute(gid, 'dt' , dt )
call write_attribute(gid, 'dtn' , dtn )
if (eos == 'adi') then
call write_attribute(gid, 'gamma', gamma)
end if
if (eos == 'iso') then
call write_attribute(gid, 'csnd' , csnd )
end if
! store the vector attributes
!

View File

@ -4,7 +4,7 @@
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2017 Grzegorz Kowal <grzegorz@amuncode.org>
!! Copyright (C) 2008-2018 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by

View File

@ -4,7 +4,7 @@
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2017 Grzegorz Kowal <grzegorz@amuncode.org>
!! Copyright (C) 2008-2018 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by

View File

@ -4,7 +4,7 @@
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2017 Grzegorz Kowal <grzegorz@amuncode.org>
!! Copyright (C) 2008-2018 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by

View File

@ -4,7 +4,7 @@
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2017 Grzegorz Kowal <grzegorz@amuncode.org>
!! Copyright (C) 2008-2018 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by

View File

@ -4,7 +4,7 @@
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2017 Grzegorz Kowal <grzegorz@amuncode.org>
!! Copyright (C) 2008-2018 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by
@ -135,6 +135,9 @@ module problems
case("blast")
setup_problem => setup_problem_blast
case("st", "sedov-taylor", "ST", "Sedov-Taylor")
setup_problem => setup_problem_sedov_taylor
case("implosion")
setup_problem => setup_problem_implosion
@ -784,6 +787,470 @@ module problems
!
!===============================================================================
!
! subroutine SETUP_PROBLEM_SEDOV_TAYLOR:
! -------------------------------------
!
! Subroutine sets the initial conditions for the spherical Sedov-Taylor
! blast problem.
!
! Arguments:
!
! pdata - pointer to the datablock structure of the currently initialized
! block;
!
! References:
!
! [1] Almgren, A. S. et al.,
! "CASTRO: A New Compressible Astrophysical Solver.
! I. Hydrodynamics and Self-Gravity",
! The Astrophysical Journal, 2010, vol. 715, pp. 1221-1238,
! http://dx.doi.org/10.1088/0004-637X/715/2/1221
!
!===============================================================================
!
subroutine setup_problem_sedov_taylor(pdata)
! include external procedures and variables
!
use blocks , only : block_data
use constants , only : pi, pi4, d2r
use coordinates, only : im, jm, km
use coordinates, only : ax, ay, az, adx, ady, adz, advol
use equations , only : prim2cons
use equations , only : gamma
use equations , only : nv
use equations , only : idn, ivx, ivy, ivz, ipr, ibx, iby, ibz, ibp
use error , only : print_error
use parameters , only : get_parameter_real, get_parameter_integer
! local variables are not implicit by default
!
implicit none
! input arguments
!
type(block_data), pointer, intent(inout) :: pdata
! default parameter values
!
real(kind=8), save :: radius = 1.00d-02
real(kind=8), save :: dens = 1.00d+00
real(kind=8), save :: pres = 1.00d-05
real(kind=8), save :: eexp = 1.00d+00
real(kind=8), save :: buni = 0.00d+00
real(kind=8), save :: angle = 0.00d+00
#if NDIMS == 3
integer , save :: nsubgrid = 10
#endif /* NDIMS == 3 */
! local saved parameters
!
logical , save :: first = .true.
real(kind=8), save :: dn_amb, dn_ovr
real(kind=8), save :: pr_amb, pr_ovr
real(kind=8), save :: bx, by
real(kind=8), save :: r2
! local variables
!
integer :: i, j, k, ic, jc, kc
real(kind=8) :: xl, yl, zl, xu, yu, zu, rl, ru
real(kind=8) :: sn
#if NDIMS == 3
real(kind=8) :: xb, yb, zb
real(kind=8) :: xt, yt, zt
real(kind=8) :: fc_inc
#else /* NDIMS == 3 */
real(kind=8) :: rlu, rul
real(kind=8) :: xb, yb
real(kind=8) :: xt, yt
real(kind=8) :: ph
#endif /* NDIMS == 3 */
real(kind=8) :: dx, dy, dz, dxh, dyh, dzh, dvol
real(kind=8) :: fc_amb, fc_ovr
! local arrays
!
real(kind=8), dimension(nv,im) :: q, u
real(kind=8), dimension(im) :: x
real(kind=8), dimension(jm) :: y
real(kind=8), dimension(km) :: z
#if NDIMS == 3
! allocatable arrays
!
real(kind=8), dimension(:), allocatable :: xm, ym, zm
real(kind=8), dimension(:), allocatable :: xp, yp, zp
#endif /* NDIMS == 3 */
!
!-------------------------------------------------------------------------------
!
! quit if no adiabatic equation of state
!
if (ipr <= 0) then
call print_error("problems::setup_problem_sedov_taylor" &
, "Only adiabatic equation of state is supported!")
stop
end if
#ifdef PROFILE
! start accounting time for the problem setup
!
call start_timer(imu)
#endif /* PROFILE */
! prepare problem constants during the first subroutine call
!
if (first) then
! get problem parameters
!
call get_parameter_real("radius", radius)
call get_parameter_real("dens" , dens )
call get_parameter_real("pres" , pres )
call get_parameter_real("eexp" , eexp )
call get_parameter_real("buni" , buni )
call get_parameter_real("angle" , angle )
#if NDIMS == 3
! get the fine grid resolution
!
call get_parameter_integer("nsubgrid", nsubgrid)
! correct subgrid resolution if necessary
!
nsubgrid = max(1, nsubgrid)
#endif /* NDIMS == 3 */
! calculate the volume of the injection region
!
#if NDIMS == 3
dvol = pi4 * radius**3 / 3.0d+00
#else /* NDIMS == 3 */
dvol = pi * radius**2
#endif /* NDIMS == 3 */
! calculate the overdense and ambient region densities and pressures
!
dn_amb = dens
dn_ovr = dn_amb
pr_amb = pres
pr_ovr = (gamma - 1.0d+00) * eexp / dvol
! calculate initial uniform field components
!
if (ibx > 0) then
sn = sin(d2r * angle)
bx = buni * sqrt(1.0d+00 - sn * sn)
by = buni * sn
end if
! calculate the square of radius
!
r2 = radius * radius
! reset the first execution flag
!
first = .false.
end if ! first call
! prepare block coordinates
!
x(1:im) = pdata%meta%xmin + ax(pdata%meta%level,1:im)
y(1:jm) = pdata%meta%ymin + ay(pdata%meta%level,1:jm)
#if NDIMS == 3
z(1:km) = pdata%meta%zmin + az(pdata%meta%level,1:km)
#else /* NDIMS == 3 */
z(1:km) = 0.0d+00
#endif /* NDIMS == 3 */
! calculate mesh intervals and areas
!
dx = adx(pdata%meta%level)
dy = ady(pdata%meta%level)
dz = adz(pdata%meta%level)
dxh = 0.5d+00 * dx
dyh = 0.5d+00 * dy
#if NDIMS == 3
dzh = 0.5d+00 * dz
#else /* NDIMS == 3 */
dzh = 1.0d+00
#endif /* NDIMS == 3 */
dvol = advol(pdata%meta%level)
#if NDIMS == 3
! allocate subgrid coordinates
!
allocate(xm(nsubgrid), ym(nsubgrid), zm(nsubgrid))
allocate(xp(nsubgrid), yp(nsubgrid), zp(nsubgrid))
! and generate them
!
xm(:) = (1.0d+00 * (/(i, i = 0, nsubgrid - 1)/)) / nsubgrid
ym(:) = xm(:)
zm(:) = xm(:)
xm(:) = xm(:) * dx
ym(:) = ym(:) * dy
zm(:) = zm(:) * dz
xp(:) = (1.0d+00 * (/(i, i = 1, nsubgrid )/)) / nsubgrid
yp(:) = xp(:)
zp(:) = xp(:)
xp(:) = xp(:) * dx
yp(:) = yp(:) * dy
zp(:) = zp(:) * dz
! calculate the factor increment for the given subgrid
!
fc_inc = dvol / nsubgrid**3
#endif /* NDIMS == 3 */
! set density and pressure of the ambient
!
q(idn,:) = dn_amb
q(ipr,:) = pr_amb
! reset velocity components
!
q(ivx,:) = 0.0d+00
q(ivy,:) = 0.0d+00
q(ivz,:) = 0.0d+00
! if magnetic field is present, set it to be uniform with the desired strength
! and orientation
!
if (ibx > 0) then
q(ibx,:) = bx
q(iby,:) = by
q(ibz,:) = 0.0d+00
q(ibp,:) = 0.0d+00
end if
! iterate over all positions in the YZ plane
!
do k = 1, km
#if NDIMS == 3
! calculate the corner Z coordinates
!
zl = abs(z(k)) - dzh
zu = abs(z(k)) + dzh
#endif /* NDIMS == 3 */
do j = 1, jm
! calculate the corner Y coordinates
!
yl = abs(y(j)) - dyh
yu = abs(y(j)) + dyh
! sweep along the X coordinate
!
do i = 1, im
! calculate the corner X coordinates
!
xl = abs(x(i)) - dxh
xu = abs(x(i)) + dxh
! calculate the minimum and maximum corner distances from the origin
!
#if NDIMS == 3
rl = xl * xl + yl * yl + zl * zl
ru = xu * xu + yu * yu + zu * zu
#else /* NDIMS == 3 */
rl = xl * xl + yl * yl
ru = xu * xu + yu * yu
#endif /* NDIMS == 3 */
! set the initial density and pressure in cells laying completely within
! the blast radius
!
if (ru <= r2) then
! set density and pressure for the overpressure region
!
q(idn,i) = dn_ovr
q(ipr,i) = pr_ovr
! set the initial pressure in the cell completely outside the radius
!
else if (rl >= r2) then
! set density and pressure of the ambient
!
q(idn,i) = dn_amb
q(ipr,i) = pr_amb
! integrate density or pressure in cells which are crossed by the circule with
! the given radius
!
else
#if NDIMS == 3
! interpolate the factor using subgrid
!
fc_ovr = 0.0d+00
do kc = 1, nsubgrid
zb = (zl + zm(kc))**2
zt = (zl + zp(kc))**2
do jc = 1, nsubgrid
yb = (yl + ym(jc))**2
yt = (yl + yp(jc))**2
do ic = 1, nsubgrid
xb = (xl + xm(ic))**2
xt = (xl + xp(ic))**2
! update the integration factor depending on the subcell position
!
if ((xt + yt + zt) <= r2) then
fc_ovr = fc_ovr + fc_inc
else if ((xb + yb + zb) < r2) then
fc_ovr = fc_ovr + 0.5d+00 * fc_inc
end if
end do ! ic = 1, nsubgrid
end do ! jc = 1, nsubgrid
end do ! kc = 1, nsubgrid
#else /* NDIMS == 3 */
! calculate the distance of remaining corners
!
rlu = xl * xl + yu * yu
rul = xu * xu + yl * yl
! separate in the cases of which corners lay inside, and which outside
! the radius
!
if (min(rlu, rul) >= r2) then
! only one cell corner inside the radius
!
! calculate middle coordinates of the radius-edge crossing point
!
xb = sqrt(r2 - yl**2) - xl
yb = sqrt(r2 - xl**2) - yl
! calculate the sin(½φ), φ, and sin(φ)
!
sn = 0.5d+00 * sqrt(xb**2 + yb**2) / radius
ph = 2.0d+00 * asin(sn)
sn = sin(ph)
! calculate the area of cell intersection with the radius
!
fc_ovr = 0.5d+00 * (xb * yb + (ph - sn) * r2)
else if (rlu >= r2) then
! two lower corners inside the radius
!
! calculate middle coordinates of the radius-edge crossing point
!
yb = sqrt(r2 - xl**2) - yl
yt = sqrt(r2 - xu**2) - yl
! calculate the sin(½φ), φ, and sin(φ)
!
sn = 0.5d+00 * sqrt(dx**2 + (yt - yb)**2) / radius
ph = 2.0d+00 * asin(sn)
sn = sin(ph)
! calculate the area of cell intersection with the radius
!
fc_ovr = 0.5d+00 * ((yt + yb) * dx + (ph - sn) * r2)
else if (rul >= r2) then
! two left corners inside the radius
!
! calculate middle coordinates of the radius-edge crossing point
!
xb = sqrt(r2 - yl**2) - xl
xt = sqrt(r2 - yu**2) - xl
! calculate the sin(½φ), φ, and sin(φ)
!
sn = 0.5d+00 * sqrt((xt - xb)**2 + dy**2) / radius
ph = 2.0d+00 * asin(sn)
sn = sin(ph)
! calculate the area of cell intersection with the radius
!
fc_ovr = 0.5d+00 * ((xt + xb) * dy + (ph - sn) * r2)
else
! three corners inside the radius
!
! calculate middle coordinates of the radius-edge crossing point
!
xt = xu - sqrt(r2 - yu**2)
yt = yu - sqrt(r2 - xu**2)
! calculate the sin(½φ), φ, and sin(φ)
!
sn = 0.5d+00 * sqrt(xt**2 + yt**2) / radius
ph = 2.0d+00 * asin(sn)
sn = sin(ph)
! calculate the area of cell intersection with the radius
!
fc_ovr = dvol - 0.5d+00 * (xt * yt - (ph - sn) * r2)
end if
#endif /* NDIMS == 3 */
! normalize coefficients
!
fc_ovr = fc_ovr / dvol
fc_amb = 1.0d+00 - fc_ovr
! integrate density and pressure over the edge cells
!
q(idn,i) = fc_ovr * dn_ovr + fc_amb * dn_amb
q(ipr,i) = fc_ovr * pr_ovr + fc_amb * pr_amb
end if
end do ! i = 1, im
! convert the primitive variables to conservative ones
!
call prim2cons(im, q(1:nv,1:im), u(1:nv,1:im))
! copy the conserved variables to the current block
!
pdata%u(1:nv,1:im,j,k) = u(1:nv,1:im)
! copy the primitive variables to the current block
!
pdata%q(1:nv,1:im,j,k) = q(1:nv,1:im)
end do ! j = 1, jm
end do ! k = 1, km
#if NDIMS == 3
! deallocate subgrid coordinates
!
deallocate(xm, ym, zm)
deallocate(xp, yp, zp)
#endif /* NDIMS == 3 */
#ifdef PROFILE
! stop accounting time for the problems setup
!
call stop_timer(imu)
#endif /* PROFILE */
!-------------------------------------------------------------------------------
!
end subroutine setup_problem_sedov_taylor
!
!===============================================================================
!
! subroutine SETUP_PROBLEM_IMPLOSION:
! ----------------------------------
!
@ -1213,6 +1680,14 @@ module problems
! pdata - pointer to the datablock structure of the currently initialized
! block;
!
! References:
!
! [1] Almgren, A. S. et al.,
! "CASTRO: A New Compressible Astrophysical Solver.
! I. Hydrodynamics and Self-Gravity",
! The Astrophysical Journal, 2010, vol. 715, pp. 1221-1238,
! http://dx.doi.org/10.1088/0004-637X/715/2/1221
!
!===============================================================================
!
subroutine setup_problem_rayleigh_taylor(pdata)
@ -1220,9 +1695,10 @@ module problems
! include external procedures and variables
!
use blocks , only : block_data
use constants , only : d2r
use constants , only : pi2, d2r
use coordinates, only : xmin, xmax, xlen
use coordinates, only : im, jm, km
use coordinates, only : ay, ady
use coordinates, only : ax, ay, ady
use equations , only : prim2cons
use equations , only : nv
use equations , only : idn, ivx, ivy, ivz, ipr, ibx, iby, ibz, ibp
@ -1240,12 +1716,16 @@ module problems
! default parameter values
!
real(kind=8), save :: ycut = 0.00d-00
real(kind=8), save :: dens = 1.00d+00
real(kind=8), save :: drat = 2.00d+00
real(kind=8), save :: pres = 2.50d+00
real(kind=8), save :: vper = 1.00d-02
real(kind=8), save :: gacc = -1.00d-01
real(kind=8), save :: damp = 5.00d-01
real(kind=8), save :: pres = 5.00d+00
real(kind=8), save :: ycut = 0.00d+00
real(kind=8), save :: vper = 0.00d+00
real(kind=8), save :: lper = 1.00d-02
real(kind=8), save :: kper = 1.00d+00
real(kind=8), save :: hdel = 5.00d-03
real(kind=8), save :: gacc = -1.00d+00
real(kind=8), save :: buni = 1.00d+00
real(kind=8), save :: bgui = 0.00d+00
real(kind=8), save :: angle = 0.00d+00
@ -1262,9 +1742,8 @@ module problems
! local arrays
!
real(kind=8), dimension(nv,im) :: q, u
real(kind=8), dimension(im) :: x
real(kind=8), dimension(im) :: x, yp
real(kind=8), dimension(jm) :: y
real(kind=8), dimension(km) :: z
!
!-------------------------------------------------------------------------------
!
@ -1284,12 +1763,19 @@ module problems
call get_parameter_real("dens" , dens )
call get_parameter_real("drat" , drat )
call get_parameter_real("pres" , pres )
call get_parameter_real("lper" , lper )
call get_parameter_real("kper" , kper )
call get_parameter_real("vper" , vper )
call get_parameter_real("hdel" , hdel )
call get_parameter_real("gacc" , gacc )
call get_parameter_real("buni" , buni )
call get_parameter_real("bgui" , bgui )
call get_parameter_real("angle" , angle )
! calculate the density change across the interface
!
damp = 5.0d-01 * (drat * dens - dens)
! reset the first execution flag
!
first = .false.
@ -1298,6 +1784,7 @@ module problems
! prepare block coordinates
!
x(1:im) = pdata%meta%xmin + ax(pdata%meta%level,1:im)
y(1:jm) = pdata%meta%ymin + ay(pdata%meta%level,1:jm)
! set the ambient density and pressure
@ -1324,6 +1811,11 @@ module problems
end if
! prepare density perturbation
!
yp(1:im) = 0.5d+00 * lper * (cos(pi2 * kper * (x(1:im) - xmin) / xlen) &
+ cos(pi2 * kper * (xmax - x(1:im)) / xlen)) + ycut
! iterate over all positions in the YZ plane
!
do k = 1, km
@ -1337,6 +1829,7 @@ module problems
else
q(idn,1:im) = dens * drat
end if
q(idn,1:im) = dens + damp * (1.0d+00 + tanh((y(j) - yp(1:im)) / hdel))
q(ipr,1:im) = pres + q(idn,1:im) * gacc * y(j)
else
if (y(j) <= ycut) then
@ -1354,9 +1847,11 @@ module problems
! add a random seed velocity component
!
do i = 1, im
q(ivy,i) = q(ivy,i) + vper * randomn()
end do
if (vper /= 0.0d+00) then
do i = 1, im
q(ivy,i) = q(ivy,i) + vper * randomn()
end do
end if
! convert the primitive variables to conservative ones
!

View File

@ -4,7 +4,7 @@
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2017 Grzegorz Kowal <grzegorz@amuncode.org>
!! Copyright (C) 2008-2018 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by

View File

@ -4,7 +4,7 @@
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2017 Grzegorz Kowal <grzegorz@amuncode.org>
!! Copyright (C) 2008-2018 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by

View File

@ -4,7 +4,7 @@
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2017 Grzegorz Kowal <grzegorz@amuncode.org>
!! Copyright (C) 2008-2018 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by

View File

@ -4,7 +4,7 @@
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2017 Grzegorz Kowal <grzegorz@amuncode.org>
!! Copyright (C) 2008-2018 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by

View File

@ -4,7 +4,7 @@
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2017 Grzegorz Kowal <grzegorz@amuncode.org>
!! Copyright (C) 2008-2018 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by

View File

@ -4,7 +4,7 @@
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2017 Grzegorz Kowal <grzegorz@amuncode.org>
!! Copyright (C) 2008-2018 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by

View File

@ -4,7 +4,7 @@
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2017 Grzegorz Kowal <grzegorz@amuncode.org>
!! Copyright (C) 2017-2018 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by

View File

@ -4,7 +4,7 @@
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2015-2017 Grzegorz Kowal <grzegorz@amuncode.org>
!! Copyright (C) 2015-2018 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by