EVOLUTION: Implement 3rd order 4-stage Runge-Kutta integraiton.
Signed-off-by: Grzegorz Kowal <grzegorz@amuncode.org>
This commit is contained in:
parent
d59a5be1fc
commit
c1d7c9a52f
@ -140,6 +140,12 @@ module evolution
|
||||
name_int = "3rd order Runge-Kutta method"
|
||||
evolve => evolve_rk3
|
||||
|
||||
case ("rk3.4", "RK3.4")
|
||||
|
||||
name_int = "3rd order 4-stage Runge-Kutta method"
|
||||
evolve => evolve_rk34
|
||||
cfl = 2.0d+00 * cfl
|
||||
|
||||
case default
|
||||
|
||||
if (verbose) then
|
||||
@ -814,6 +820,240 @@ module evolution
|
||||
!
|
||||
!===============================================================================
|
||||
!
|
||||
! subroutine EVOLVE_RK34:
|
||||
! ----------------------
|
||||
!
|
||||
! Subroutine advances the solution by one time step using the 3rd order
|
||||
! 4-stage Runge-Kutta time integration method.
|
||||
!
|
||||
! References:
|
||||
!
|
||||
! [1] Ruuth, S. J.,
|
||||
! "Global Optimization of Explicit Strong-Stability-Preserving
|
||||
! Runge-Kutta methods",
|
||||
! Mathematics of Computation,
|
||||
! 2006, volume 75, number 253, pp. 183-207
|
||||
!
|
||||
!
|
||||
!===============================================================================
|
||||
!
|
||||
subroutine evolve_rk34()
|
||||
|
||||
! include external procedures
|
||||
!
|
||||
use boundaries , only : boundary_variables
|
||||
use sources , only : update_sources
|
||||
|
||||
! include external variables
|
||||
!
|
||||
use blocks , only : block_data, list_data
|
||||
use coordinates , only : im, jm, km
|
||||
use equations , only : nv, ibp
|
||||
|
||||
! local variables are not implicit by default
|
||||
!
|
||||
implicit none
|
||||
|
||||
! local pointers
|
||||
!
|
||||
type(block_data), pointer :: pblock
|
||||
|
||||
! local variables
|
||||
!
|
||||
real(kind=8) :: ds
|
||||
|
||||
! local arrays
|
||||
!
|
||||
real(kind=8), dimension(nv,im,jm,km) :: du
|
||||
|
||||
! local integration parameters
|
||||
!
|
||||
real(kind=8), parameter :: fh = 1.0d+00 / 2.0d+00, fo = 1.0d+00 / 3.0d+00
|
||||
real(kind=8), parameter :: ft = 2.0d+00 / 3.0d+00, fs = 1.0d+00 / 6.0d+00
|
||||
!
|
||||
!-------------------------------------------------------------------------------
|
||||
!
|
||||
! = 1st step of the integration: U(1) = U(n) + 1/2 dt F[U(n)] =
|
||||
!
|
||||
! calculate fractional time step
|
||||
!
|
||||
ds = fh * dt
|
||||
|
||||
! update fluxes for the first step of the RK2 integration
|
||||
!
|
||||
call update_fluxes()
|
||||
|
||||
! update the solution using numerical fluxes stored in the data blocks
|
||||
!
|
||||
pblock => list_data
|
||||
do while (associated(pblock))
|
||||
|
||||
! calculate variable increment for the current block
|
||||
!
|
||||
call update_increment(pblock, du(:,:,:,:))
|
||||
|
||||
! add source terms
|
||||
!
|
||||
call update_sources(pblock, du(:,:,:,:))
|
||||
|
||||
! update the solution for the fluid variables
|
||||
!
|
||||
pblock%u1(1:nv,:,:,:) = pblock%u0(1:nv,:,:,:) + ds * du(1:nv,:,:,:)
|
||||
|
||||
! update the conservative variable pointer
|
||||
!
|
||||
pblock%u => pblock%u1
|
||||
|
||||
! assign pointer to the next block
|
||||
!
|
||||
pblock => pblock%next
|
||||
|
||||
end do
|
||||
|
||||
! update primitive variables
|
||||
!
|
||||
call update_variables()
|
||||
|
||||
! update boundaries
|
||||
!
|
||||
call boundary_variables()
|
||||
|
||||
! = 2nd step of the integration: U(2) = U(1) + 1/2 dt F[U(1)] =
|
||||
! (we can copy U(2) directly to U(1), since U(1) is not used anymore)
|
||||
!
|
||||
! update fluxes for the first step of the RK2 integration
|
||||
!
|
||||
call update_fluxes()
|
||||
|
||||
! update the solution using numerical fluxes stored in the data blocks
|
||||
!
|
||||
pblock => list_data
|
||||
do while (associated(pblock))
|
||||
|
||||
! calculate variable increment for the current block
|
||||
!
|
||||
call update_increment(pblock, du(:,:,:,:))
|
||||
|
||||
! add source terms
|
||||
!
|
||||
call update_sources(pblock, du(:,:,:,:))
|
||||
|
||||
! update the solution for the fluid variables
|
||||
!
|
||||
pblock%u1(1:nv,:,:,:) = pblock%u1(1:nv,:,:,:) + ds * du(1:nv,:,:,:)
|
||||
|
||||
! assign pointer to the next block
|
||||
!
|
||||
pblock => pblock%next
|
||||
|
||||
end do
|
||||
|
||||
! update primitive variables
|
||||
!
|
||||
call update_variables()
|
||||
|
||||
! update boundaries
|
||||
!
|
||||
call boundary_variables()
|
||||
|
||||
! = 3rd step of the integration: U(3) = 2/3 U(n) + 1/3 U(2) + 1/6 dt F[U(2)] =
|
||||
! (we can copy U(3) directly to U(1), since U(1) is not used anymore)
|
||||
!
|
||||
! calculate fractional time step
|
||||
!
|
||||
ds = fs * dt
|
||||
|
||||
! update fluxes for the first step of the RK2 integration
|
||||
!
|
||||
call update_fluxes()
|
||||
|
||||
! update the solution using numerical fluxes stored in the data blocks
|
||||
!
|
||||
pblock => list_data
|
||||
do while (associated(pblock))
|
||||
|
||||
! calculate variable increment for the current block
|
||||
!
|
||||
call update_increment(pblock, du(:,:,:,:))
|
||||
|
||||
! add source terms
|
||||
!
|
||||
call update_sources(pblock, du(:,:,:,:))
|
||||
|
||||
! update the solution for the fluid variables
|
||||
!
|
||||
pblock%u1(1:nv,:,:,:) = ft * pblock%u0(1:nv,:,:,:) &
|
||||
+ fo * pblock%u1(1:nv,:,:,:) + ds * du(1:nv,:,:,:)
|
||||
|
||||
! assign pointer to the next block
|
||||
!
|
||||
pblock => pblock%next
|
||||
|
||||
end do
|
||||
|
||||
! update primitive variables
|
||||
!
|
||||
call update_variables()
|
||||
|
||||
! update boundaries
|
||||
!
|
||||
call boundary_variables()
|
||||
|
||||
! = update the final solution: U(n+1) = U(3) + 1/2 dt F[U(3)]
|
||||
!
|
||||
! calculate fractional time step
|
||||
!
|
||||
ds = fh * dt
|
||||
|
||||
! update fluxes for the second step of the RK2 integration
|
||||
!
|
||||
call update_fluxes()
|
||||
|
||||
! update the solution using numerical fluxes stored in the data blocks
|
||||
!
|
||||
pblock => list_data
|
||||
do while (associated(pblock))
|
||||
|
||||
! calculate variable increment for the current block
|
||||
!
|
||||
call update_increment(pblock, du(:,:,:,:))
|
||||
|
||||
! add source terms
|
||||
!
|
||||
call update_sources(pblock, du(:,:,:,:))
|
||||
|
||||
! update the solution for the fluid variables
|
||||
!
|
||||
pblock%u0(1:nv,:,:,:) = pblock%u1(1:nv,:,:,:) + ds * du(1:nv,:,:,:)
|
||||
|
||||
! update the conservative variable pointer
|
||||
!
|
||||
pblock%u => pblock%u0
|
||||
|
||||
! update ψ by its source term
|
||||
!
|
||||
if (ibp > 0) pblock%u(ibp,:,:,:) = decay * pblock%u(ibp,:,:,:)
|
||||
|
||||
! assign pointer to the next block
|
||||
!
|
||||
pblock => pblock%next
|
||||
|
||||
end do
|
||||
|
||||
! update primitive variables
|
||||
!
|
||||
call update_variables()
|
||||
|
||||
! update boundaries
|
||||
!
|
||||
call boundary_variables()
|
||||
|
||||
!-------------------------------------------------------------------------------
|
||||
!
|
||||
end subroutine evolve_rk34
|
||||
!
|
||||
!===============================================================================
|
||||
!
|
||||
! subroutine UPDATE_FLUXES:
|
||||
! ------------------------
|
||||
!
|
||||
|
Loading…
x
Reference in New Issue
Block a user