PYTHON: Separate deprecated AmunH5 functions.

Signed-off-by: Grzegorz Kowal <grzegorz@amuncode.org>
This commit is contained in:
Grzegorz Kowal 2021-10-05 09:05:57 -03:00
parent dbf977de36
commit 919e0ce6c2
3 changed files with 849 additions and 816 deletions

View File

@ -12,6 +12,7 @@ See file LICENSE for more details.
from .amunxml import * from .amunxml import *
from .amunh5 import * from .amunh5 import *
from .amunh5_deprecated import *
from .integrals import * from .integrals import *
__all__ = [ 'AmunXML', 'AmunH5', \ __all__ = [ 'AmunXML', 'AmunH5', \

View File

@ -137,819 +137,3 @@ class AmunH5(Amun):
cname = os.path.join(self.dirname, self.chunks[chunk_number]['filename']) cname = os.path.join(self.dirname, self.chunks[chunk_number]['filename'])
with h5py.File(cname, 'r') as h5: with h5py.File(cname, 'r') as h5:
return numpy.array(h5['variables'][dataset_name]) return numpy.array(h5['variables'][dataset_name])
#===============================================================================
'''
DEPRECATED FUNCTIONS
'''
def amun_compatible(fname):
'''
Subroutine checks if the HDF5 file is AMUN compatible.
Arguments:
fname - the HDF5 file name;
Return values:
True or False;
Examples:
comp = amun_compatible('p000010_00000.h5')
'''
from warnings import warn
import h5py as h5
warn('This function is deprecated', DeprecationWarning, stacklevel=2)
with h5.File(fname, 'r') as f:
if 'codes' in f.attrs:
if f.attrs['code'].astype(str) == "AMUN":
return True
else:
print("'%s' contains attribute 'code'," % fname, \
" but it is not 'AMUN'!")
return False
elif 'attributes' in f and 'coordinates' in f and \
'variables' in f:
return True
else:
print("'%s' misses one of these groups:" % fname, \
"'attributes', 'coordinates' or 'variables'!")
return False
def amun_attribute(fname, aname):
'''
Subroutine to read global attributes from AMUN HDF5 snapshots.
Arguments:
fname - the HDF5 file name;
aname - the attribute name;
Return values:
ret - the value of the attribute or None;
Examples:
time = amun_attribute('p000010_00000.h5', 'time')
'''
from warnings import warn
import h5py as h5
import numpy as np
warn('This function is deprecated', DeprecationWarning, stacklevel=2)
if not amun_compatible(fname):
return None
with h5.File(fname, 'r') as f:
if aname in f['attributes'].attrs:
attr = f['attributes'].attrs[aname]
if attr.dtype.type is np.string_:
ret = np.squeeze(attr).astype(str)
else:
ret = np.squeeze(attr)
return ret
else:
print("Attribute '%s' cannot be found in '%s'!" % (aname, fname))
return None
def amun_coordinate(fname, iname):
'''
Subroutine to read coordinate items from AMUN HDF5 snapshots.
Arguments:
fname - the HDF5 file name;
iname - the item name;
Return values:
ret - the value of the item or None;
Examples:
bounds = amun_coordinate('p000010_00000.h5', 'bounds')
'''
from warnings import warn
import h5py as h5
import numpy as np
warn('This function is deprecated', DeprecationWarning, stacklevel=2)
if not amun_compatible(fname):
return None
with h5.File(fname, 'r') as f:
if iname in f['coordinates']:
return np.array(f['coordinates'][iname])
else:
print("Coordinate item '%s' not found in group 'coordinate' of '%s'!" % (iname, fname))
return None
def amun_dataset(fname, vname, shrink=1, interpolation='rebin', order=3, progress=False):
'''
Subroutine to read datasets from AMUN HDF5 snapshots.
Arguments:
fname - the HDF5 file name;
vname - the variable name;
shrink - the shrink factor (must be the power of 2 and not larger
than the block size);
progress - the progress bar switch;
Return values:
ret - the array of values for the variable;
Examples:
dn = amun_dataset('p000010_00000.h5', 'dens')
'''
from .interpolation import interpolate
from warnings import warn
import h5py as h5
import numpy as np
import os, sys
warn('This function is deprecated', DeprecationWarning, stacklevel=2)
if not amun_compatible(fname):
return None
dname = os.path.dirname(fname)
if progress:
sys.stdout.write("Data file path:\n '%s'\n" % (dname))
# get attributes necessary to reconstruct the domain
#
eqsys = amun_attribute(fname, 'eqsys')
eos = amun_attribute(fname, 'eos')
nr = amun_attribute(fname, 'isnap')
nc = amun_attribute(fname, 'nprocs')
nl = amun_attribute(fname, 'nleafs')
if eos == 'adi':
gm = amun_attribute(fname, 'adiabatic_index')
# get block dimensions and the maximum level
#
ndims = amun_attribute(fname, 'ndims')
nn = amun_attribute(fname, 'ncells')
bm = np.array([nn, nn, nn])
if ndims == 2:
bm[2] = 1
ng = amun_attribute(fname, 'nghosts')
ml = amun_attribute(fname, 'maxlev')
# get the base block dimensions
#
rm = amun_attribute(fname, 'bdims')
if rm is None:
rm = amun_attribute(fname, 'domain_base_dims')
if rm is None:
rm = amun_attribute(fname, 'rdims')
if rm is None:
return None
# build the list of supported variables
#
variables = []
with h5.File(fname, 'r') as f:
for var in f['variables'].keys():
variables.append(var)
# add derived variables if possible
#
variables.append('level')
if 'velx' in variables and 'vely' in variables and 'velz' in variables:
variables.append('velo')
variables.append('divv')
variables.append('vort')
if 'magx' in variables and 'magy' in variables and 'magz' in variables:
variables.append('magn')
variables.append('divb')
variables.append('curr')
if (eqsys == 'hd' or eqsys == 'mhd') and eos == 'adi' \
and 'pres' in variables:
variables.append('eint')
if 'dens' in variables and 'pres' in variables:
variables.append('temp')
if (eqsys == 'hd' or eqsys == 'mhd') \
and 'dens' in variables \
and 'velx' in variables \
and 'vely' in variables \
and 'velz' in variables:
variables.append('ekin')
if (eqsys == 'mhd' or eqsys == 'srmhd') \
and 'magx' in variables \
and 'magy' in variables \
and 'magz' in variables:
variables.append('emag')
if eqsys == 'hd' and 'ekin' in variables and 'eint' in variables:
variables.append('etot')
if eqsys == 'mhd' and 'eint' in variables \
and 'ekin' in variables \
and 'emag' in variables:
variables.append('etot')
if (eqsys == 'srhd' or eqsys == 'srmhd') and 'velo' in variables:
variables.append('lore')
# check if the requested variable is in the variable list
#
if not vname in variables:
print('The requested variable cannot be extracted from the file datasets!')
return None
# check if the shrink parameter is correct (block dimensions should be
# divisible by the shrink factor)
#
shrink = max(1, int(shrink))
if shrink > 1:
if (nn % shrink) != 0:
print('The block dimension should be divisible by the shrink factor!')
return None
sh = shrink
while(sh > 2 and sh % 2 == 0):
sh = int(sh / 2)
if (sh % 2) != 0:
print('The shrink factor should be a power of 2!')
return None
# determine the actual maximum level from the blocks
#
levs = []
for n in range(nc):
fname = 'p%06d_%05d.h5' % (nr, n)
lname = os.path.join(dname, fname)
dblocks = amun_attribute(lname, 'dblocks')
if dblocks > 0:
levs = np.append(levs, [amun_coordinate(lname, 'levels')])
ml = int(levs.max())
# prepare dimensions of the output array and allocate it
#
dm = np.array(rm[0:ndims] * bm[0:ndims] * 2**(ml - 1) / shrink, \
dtype=np.int32)
ret = np.zeros(dm[::-1])
# iterate over all subdomain files
#
nb = 0
for n in range(nc):
fname = 'p%06d_%05d.h5' % (nr, n)
lname = os.path.join(dname, fname)
dblocks = amun_attribute(lname, 'dblocks')
if dblocks > 0:
levels = amun_coordinate(lname, 'levels')
coords = amun_coordinate(lname, 'coords')
dx = amun_coordinate(lname, 'dx')
dy = amun_coordinate(lname, 'dy')
dz = amun_coordinate(lname, 'dz')
with h5.File(lname, 'r') as f:
g = f['variables']
if vname == 'level':
dataset = np.zeros(g[variables[0]].shape)
for l in range(dblocks):
dataset[:,:,:,l] = levels[l]
elif vname == 'velo':
dataset = np.sqrt(g['velx'][:,:,:,:]**2 \
+ g['vely'][:,:,:,:]**2 \
+ g['velz'][:,:,:,:]**2)
elif vname == 'magn':
dataset = np.sqrt(g['magx'][:,:,:,:]**2 \
+ g['magy'][:,:,:,:]**2 \
+ g['magz'][:,:,:,:]**2)
elif vname == 'eint':
dataset = 1.0 / (gm - 1.0) * g['pres'][:,:,:,:]
elif vname == 'ekin':
dataset = 0.5 * g['dens'][:,:,:,:] * (g['velx'][:,:,:,:]**2 \
+ g['vely'][:,:,:,:]**2 \
+ g['velz'][:,:,:,:]**2)
elif vname == 'emag':
dataset = 0.5 * (g['magx'][:,:,:,:]**2 \
+ g['magy'][:,:,:,:]**2 \
+ g['magz'][:,:,:,:]**2)
elif vname == 'etot':
dataset = 1.0 / (gm - 1.0) * g['pres'][:,:,:,:] \
+ 0.5 * g['dens'][:,:,:,:] * (g['velx'][:,:,:,:]**2 \
+ g['vely'][:,:,:,:]**2 \
+ g['velz'][:,:,:,:]**2)
if eqsys == 'mhd':
dataset += 0.5 * (g['magx'][:,:,:,:]**2 \
+ g['magy'][:,:,:,:]**2 \
+ g['magz'][:,:,:,:]**2)
elif vname == 'temp':
dataset = g['pres'][:,:,:,:] / g['dens'][:,:,:,:]
elif vname == 'lore':
dataset = 1.0 / np.sqrt(1.0 - (g['velx'][:,:,:,:]**2 \
+ g['vely'][:,:,:,:]**2 \
+ g['velz'][:,:,:,:]**2))
elif vname == 'divv':
dataset = np.zeros(g['velx'].shape)
fields = [ 'velx', 'vely', 'velz' ]
h = (dx, dy, dz)
for i in range(ndims):
v = fields[i]
dataset += 0.5 * (np.roll(g[v][:,:,:,:], -1, axis=2) \
- np.roll(g[v][:,:,:,:], 1, axis=2)) \
/ h[i][levels[:] - 1]
elif vname == 'divb':
dataset = np.zeros(g['magx'].shape)
fields = [ 'magx', 'magy', 'magz' ]
h = (dx, dy, dz)
for i in range(ndims):
v = fields[i]
dataset += 0.5 * (np.roll(g[v][:,:,:,:], -1, axis=2) \
- np.roll(g[v][:,:,:,:], 1, axis=2)) \
/ h[i][levels[:] - 1]
elif vname == 'vort':
if ndims == 3:
wx = 0.5 * (np.roll(g['velz'][:,:,:,:], -1, axis=1) \
- np.roll(g['velz'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1] \
- 0.5 * (np.roll(g['vely'][:,:,:,:], -1, axis=0) \
- np.roll(g['vely'][:,:,:,:], 1, axis=0)) \
/ dz[levels[:]-1]
wy = 0.5 * (np.roll(g['velx'][:,:,:,:], -1, axis=0) \
- np.roll(g['velx'][:,:,:,:], 1, axis=0)) \
/ dz[levels[:]-1] \
- 0.5 * (np.roll(g['velz'][:,:,:,:], -1, axis=2) \
- np.roll(g['velz'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1]
wz = 0.5 * (np.roll(g['vely'][:,:,:,:], -1, axis=2) \
- np.roll(g['vely'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1] \
- 0.5 * (np.roll(g['velx'][:,:,:,:], -1, axis=1) \
- np.roll(g['velx'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1]
else:
wx = 0.5 * (np.roll(g['velz'][:,:,:,:], -1, axis=1) \
- np.roll(g['velz'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1]
wy = - 0.5 * (np.roll(g['velz'][:,:,:,:], -1, axis=2) \
- np.roll(g['velz'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1]
wz = 0.5 * (np.roll(g['vely'][:,:,:,:], -1, axis=2) \
- np.roll(g['vely'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1] \
- 0.5 * (np.roll(g['velx'][:,:,:,:], -1, axis=1) \
- np.roll(g['velx'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1]
dataset = np.sqrt(wx * wx + wy * wy + wz * wz)
elif vname == 'curr':
if ndims == 3:
wx = 0.5 * (np.roll(g['magz'][:,:,:,:], -1, axis=1) \
- np.roll(g['magz'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1] \
- 0.5 * (np.roll(g['magy'][:,:,:,:], -1, axis=0) \
- np.roll(g['magy'][:,:,:,:], 1, axis=0)) \
/ dz[levels[:]-1]
wy = 0.5 * (np.roll(g['magx'][:,:,:,:], -1, axis=0) \
- np.roll(g['magx'][:,:,:,:], 1, axis=0)) \
/ dz[levels[:]-1] \
- 0.5 * (np.roll(g['magz'][:,:,:,:], -1, axis=2) \
- np.roll(g['magz'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1]
wz = 0.5 * (np.roll(g['magy'][:,:,:,:], -1, axis=2) \
- np.roll(g['magy'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1] \
- 0.5 * (np.roll(g['magx'][:,:,:,:], -1, axis=1) \
- np.roll(g['magx'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1]
else:
wx = 0.5 * (np.roll(g['magz'][:,:,:,:], -1, axis=1) \
- np.roll(g['magz'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1]
wy = - 0.5 * (np.roll(g['magz'][:,:,:,:], -1, axis=2) \
- np.roll(g['magz'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1]
wz = 0.5 * (np.roll(g['magy'][:,:,:,:], -1, axis=2) \
- np.roll(g['magy'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1] \
- 0.5 * (np.roll(g['magx'][:,:,:,:], -1, axis=1) \
- np.roll(g['magx'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1]
dataset = np.sqrt(wx * wx + wy * wy + wz * wz)
else:
dataset = g[vname][:,:,:,:]
# rescale all blocks to the effective resolution
#
for l in range(dblocks):
nn = 2**(ml - levels[l])
if nn <= shrink:
method = 'rebin'
else:
method = interpolation
cm = np.array(bm[0:ndims] * nn / shrink, dtype=np.int32)
ibeg = coords[0:ndims,l] * cm[0:ndims]
iend = ibeg + cm[0:ndims]
if ndims == 3:
ib, jb, kb = ibeg[0], ibeg[1], ibeg[2]
ie, je, ke = iend[0], iend[1], iend[2]
ret[kb:ke,jb:je,ib:ie] = interpolate(dataset[:,:,:,l], cm, ng, method=method, order=order)
else:
ib, jb = ibeg[0], ibeg[1]
ie, je = iend[0], iend[1]
ret[jb:je,ib:ie] = interpolate(dataset[0,:,:,l], cm, ng, method=method, order=order)
nb += 1
# print progress bar if desired
#
if progress:
sys.stdout.write('\r')
sys.stdout.write("Reading '%s' from '%s': block %d from %d" \
% (vname, fname, nb, nl))
sys.stdout.flush()
if (progress):
sys.stdout.write('\n')
sys.stdout.flush()
return ret
def amun_dataset_vtk(fname, vname, label=None, compression=None, compression_level=19, progress=False):
'''
Subroutine to convert a dataset specified by argument 'vname' from
the AMUN HDF5 snapshot to OverlappedAMR VTK file.
Arguments:
fname - the HDF5 file name;
vname - the variable name;
label - the variable label (long name);
compression - the compression type: 'lz4', 'zlib', 'lzma'
progress - the progress bar switch;
Examples:
dn = amun_dataset_vtk('p000010_00000.h5', 'dens')
'''
from .octree import OcBase, OcNode
from .vtkio import WriteVTK
from warnings import warn
import numpy as np
import os, sys
warn('This function is deprecated', DeprecationWarning, stacklevel=2)
if not amun_compatible(fname):
return None
if amun_attribute(fname, 'ndims') < 3:
print('Subroutine amun_dataset_vtk() supports only 3D domains.')
return None
if label == None:
label = vname
dname = os.path.dirname(fname)
if progress:
sys.stdout.write("Data file path:\n '%s'\n" % (dname))
# get attributes necessary to reconstruct the domain
#
eqsys = amun_attribute(fname, 'eqsys')
eos = amun_attribute(fname, 'eos')
nr = amun_attribute(fname, 'isnap')
nc = amun_attribute(fname, 'nprocs')
nl = amun_attribute(fname, 'nleafs')
if eos == 'adi':
gm = amun_attribute(fname, 'adiabatic_index')
# get block dimensions and the maximum level
#
ndims = amun_attribute(fname, 'ndims')
nn = amun_attribute(fname, 'ncells')
bm = np.array([nn, nn, nn])
ng = amun_attribute(fname, 'nghosts')
ml = amun_attribute(fname, 'maxlev')
# get the base block dimensions
#
rm = amun_attribute(fname, 'bdims')
if rm is None:
rm = amun_attribute(fname, 'domain_base_dims')
if rm is None:
rm = amun_attribute(fname, 'rdims')
if rm is None:
return None
# get domain bounds
#
xmin = amun_attribute(fname, 'xmin')
ymin = amun_attribute(fname, 'ymin')
zmin = amun_attribute(fname, 'zmin')
xlen = amun_attribute(fname, 'xmax') - xmin
ylen = amun_attribute(fname, 'ymax') - ymin
zlen = amun_attribute(fname, 'zmax') - zmin
# build the list of supported variables
#
variables = []
with h5.File(fname, 'r') as f:
for var in f['variables'].keys():
variables.append(var)
# add derived variables if possible
#
variables.append('level')
if 'velx' in variables and 'vely' in variables and 'velz' in variables:
variables.append('velo')
variables.append('divv')
variables.append('vort')
if 'magx' in variables and 'magy' in variables and 'magz' in variables:
variables.append('magn')
variables.append('divb')
variables.append('curr')
if (eqsys == 'hd' or eqsys == 'mhd') and eos == 'adi' \
and 'pres' in variables:
variables.append('eint')
if 'dens' in variables and 'pres' in variables:
variables.append('temp')
if (eqsys == 'hd' or eqsys == 'mhd') \
and 'dens' in variables \
and 'velx' in variables \
and 'vely' in variables \
and 'velz' in variables:
variables.append('ekin')
if (eqsys == 'mhd' or eqsys == 'srmhd') \
and 'magx' in variables \
and 'magy' in variables \
and 'magz' in variables:
variables.append('emag')
if eqsys == 'hd' and 'ekin' in variables and 'eint' in variables:
variables.append('etot')
if eqsys == 'mhd' and 'eint' in variables \
and 'ekin' in variables \
and 'emag' in variables:
variables.append('etot')
if (eqsys == 'srhd' or eqsys == 'srmhd') and 'velo' in variables:
variables.append('lore')
# check if the requested variable is in the variable list
#
if not vname in variables:
print('The requested variable cannot be extracted from the file datasets!')
return None
# determine the actual maximum level from the blocks
#
levs = []
for n in range(nc):
fname = 'p%06d_%05d.h5' % (nr, n)
lname = os.path.join(dname, fname)
dblocks = amun_attribute(lname, 'dblocks')
if dblocks > 0:
levs = np.append(levs, [amun_coordinate(lname, 'levels')])
ml = int(levs.max())
# create octree base
base = OcBase([xmin, ymin, zmin], [xlen, ylen, zlen], rm)
# iterate over all subdomain files
#
nb = 0
for n in range(nc):
fname = 'p%06d_%05d.h5' % (nr, n)
lname = os.path.join(dname, fname)
dblocks = amun_attribute(lname, 'dblocks')
if dblocks > 0:
levels = amun_coordinate(lname, 'levels')
coords = amun_coordinate(lname, 'coords')
bounds = amun_coordinate(lname, 'bounds')
dx = amun_coordinate(lname, 'dx')
dy = amun_coordinate(lname, 'dy')
dz = amun_coordinate(lname, 'dz')
with h5.File(lname, 'r') as f:
g = f['variables']
if vname == 'level':
dataset = np.zeros(g[variables[0]].shape)
for l in range(dblocks):
dataset[:,:,:,l] = levels[l]
elif vname == 'velo':
dataset = np.sqrt(g['velx'][:,:,:,:]**2 \
+ g['vely'][:,:,:,:]**2 \
+ g['velz'][:,:,:,:]**2)
elif vname == 'magn':
dataset = np.sqrt(g['magx'][:,:,:,:]**2 \
+ g['magy'][:,:,:,:]**2 \
+ g['magz'][:,:,:,:]**2)
elif vname == 'eint':
dataset = 1.0 / (gm - 1.0) * g['pres'][:,:,:,:]
elif vname == 'ekin':
dataset = 0.5 * g['dens'][:,:,:,:] * (g['velx'][:,:,:,:]**2 \
+ g['vely'][:,:,:,:]**2 \
+ g['velz'][:,:,:,:]**2)
elif vname == 'emag':
dataset = 0.5 * (g['magx'][:,:,:,:]**2 \
+ g['magy'][:,:,:,:]**2 \
+ g['magz'][:,:,:,:]**2)
elif vname == 'etot':
dataset = 1.0 / (gm - 1.0) * g['pres'][:,:,:,:] \
+ 0.5 * g['dens'][:,:,:,:] * (g['velx'][:,:,:,:]**2 \
+ g['vely'][:,:,:,:]**2 \
+ g['velz'][:,:,:,:]**2)
if eqsys == 'mhd':
dataset += 0.5 * (g['magx'][:,:,:,:]**2 \
+ g['magy'][:,:,:,:]**2 \
+ g['magz'][:,:,:,:]**2)
elif vname == 'temp':
dataset = g['pres'][:,:,:,:] / g['dens'][:,:,:,:]
elif vname == 'lore':
dataset = 1.0 / np.sqrt(1.0 - (g['velx'][:,:,:,:]**2 \
+ g['vely'][:,:,:,:]**2 \
+ g['velz'][:,:,:,:]**2))
elif vname == 'divv':
dataset = np.zeros(g['velx'].shape)
fields = [ 'velx', 'vely', 'velz' ]
h = (dx, dy, dz)
for i in range(ndims):
v = fields[i]
dataset += 0.5 * (np.roll(g[v][:,:,:,:], -1, axis=2) \
- np.roll(g[v][:,:,:,:], 1, axis=2)) \
/ h[i][levels[:] - 1]
elif vname == 'divb':
dataset = np.zeros(g['magx'].shape)
fields = [ 'magx', 'magy', 'magz' ]
h = (dx, dy, dz)
for i in range(ndims):
v = fields[i]
dataset += 0.5 * (np.roll(g[v][:,:,:,:], -1, axis=2) \
- np.roll(g[v][:,:,:,:], 1, axis=2)) \
/ h[i][levels[:] - 1]
elif vname == 'vort':
if ndims == 3:
wx = 0.5 * (np.roll(g['velz'][:,:,:,:], -1, axis=1) \
- np.roll(g['velz'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1] \
- 0.5 * (np.roll(g['vely'][:,:,:,:], -1, axis=0) \
- np.roll(g['vely'][:,:,:,:], 1, axis=0)) \
/ dz[levels[:]-1]
wy = 0.5 * (np.roll(g['velx'][:,:,:,:], -1, axis=0) \
- np.roll(g['velx'][:,:,:,:], 1, axis=0)) \
/ dz[levels[:]-1] \
- 0.5 * (np.roll(g['velz'][:,:,:,:], -1, axis=2) \
- np.roll(g['velz'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1]
wz = 0.5 * (np.roll(g['vely'][:,:,:,:], -1, axis=2) \
- np.roll(g['vely'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1] \
- 0.5 * (np.roll(g['velx'][:,:,:,:], -1, axis=1) \
- np.roll(g['velx'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1]
else:
wx = 0.5 * (np.roll(g['velz'][:,:,:,:], -1, axis=1) \
- np.roll(g['velz'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1]
wy = - 0.5 * (np.roll(g['velz'][:,:,:,:], -1, axis=2) \
- np.roll(g['velz'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1]
wz = 0.5 * (np.roll(g['vely'][:,:,:,:], -1, axis=2) \
- np.roll(g['vely'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1] \
- 0.5 * (np.roll(g['velx'][:,:,:,:], -1, axis=1) \
- np.roll(g['velx'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1]
dataset = np.sqrt(wx * wx + wy * wy + wz * wz)
elif vname == 'curr':
if ndims == 3:
wx = 0.5 * (np.roll(g['magz'][:,:,:,:], -1, axis=1) \
- np.roll(g['magz'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1] \
- 0.5 * (np.roll(g['magy'][:,:,:,:], -1, axis=0) \
- np.roll(g['magy'][:,:,:,:], 1, axis=0)) \
/ dz[levels[:]-1]
wy = 0.5 * (np.roll(g['magx'][:,:,:,:], -1, axis=0) \
- np.roll(g['magx'][:,:,:,:], 1, axis=0)) \
/ dz[levels[:]-1] \
- 0.5 * (np.roll(g['magz'][:,:,:,:], -1, axis=2) \
- np.roll(g['magz'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1]
wz = 0.5 * (np.roll(g['magy'][:,:,:,:], -1, axis=2) \
- np.roll(g['magy'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1] \
- 0.5 * (np.roll(g['magx'][:,:,:,:], -1, axis=1) \
- np.roll(g['magx'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1]
else:
wx = 0.5 * (np.roll(g['magz'][:,:,:,:], -1, axis=1) \
- np.roll(g['magz'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1]
wy = - 0.5 * (np.roll(g['magz'][:,:,:,:], -1, axis=2) \
- np.roll(g['magz'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1]
wz = 0.5 * (np.roll(g['magy'][:,:,:,:], -1, axis=2) \
- np.roll(g['magy'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1] \
- 0.5 * (np.roll(g['magx'][:,:,:,:], -1, axis=1) \
- np.roll(g['magx'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1]
dataset = np.sqrt(wx * wx + wy * wy + wz * wz)
else:
dataset = g[vname][:,:,:,:]
# rescale all blocks to the effective resolution
#
for l in range(dblocks):
lv = levels[l] - 1
center = (bounds[0,:,l] + bounds[1,:,l]) / 2
base.createNodeBranch(center, lv)
base.setNodeData(center, lv, dataset[ng:-ng,ng:-ng,ng:-ng,l])
nb += 1
# print progress bar if desired
#
if progress:
sys.stdout.write('\r')
sys.stdout.write("Reading '%s' from '%s': block %d from %d" \
% (vname, fname, nb, nl))
sys.stdout.flush()
if (progress):
sys.stdout.write('\n')
sys.stdout.flush()
if progress:
sys.stdout.write("Populating AMR structure\n")
base.populateNodeData()
if progress:
sys.stdout.write("Generating OverlappingAMR VTK files\n")
ofile = "{}_{:06d}.vthb".format(vname, nr)
opath = "{}_{:06d}".format(vname, nr)
if not os.path.exists(opath):
os.makedirs(opath)
with open(ofile, 'w') as vtk:
vtk.write('<VTKFile type="vtkOverlappingAMR" version="1.1" ' + \
'byte_order="LittleEndian" header_type="UInt64">\n')
vtk.write(' <vtkOverlappingAMR ' + \
'origin="{} {} {}" '.format(*base.lower) + \
'grid_description="XYZ">\n')
fmt = '{}_{:0' + str(len(str(ml))) + '}_{:0' + str(len(str(base.nodes))) + 'd}.vti'
m = 0
for lv in range(ml):
cw = base.size / (rm * nn * 2**lv)
vtk.write(' <Block level="{}"'.format(lv) + \
' spacing="{} {} {}">\n'.format(*cw))
no = 0
for item in base.getNodesFromLevel(lv):
lo = np.array(item.index) * bm
up = lo + bm - 1
ll = np.stack((lo,up)).T.flatten()
if item.hasData:
vfile = os.path.join(opath, fmt.format(vname, lv, no))
WriteVTK(vfile, label, item.data, \
origin = (item.lower[0], item.lower[1], item.lower[2]), \
spacing = (cw[0], cw[1], cw[2]), \
compression=compression, compression_level=compression_level)
vtk.write(' <DataSet index="{}"'.format(no) + \
' amr_box = "{} {} {} {} {} {}"'.format(*ll) + \
' file = "{}"></DataSet>\n'.format(vfile))
no += 1
else:
vtk.write(' <DataSet index="{}"'.format(no) + \
' amr_box = "{} {} {} {} {} {}"'.format(*ll) + \
'></DataSet>\n')
m += 1
if progress:
sys.stdout.write('\r')
sys.stdout.write("Storing AMR block {} from {}".format(m, base.nodes))
sys.stdout.flush()
vtk.write(' </Block>\n')
vtk.write(' </vtkOverlappingAMR>\n')
vtk.write('</VTKFile>')
if (progress):
sys.stdout.write('\n')
sys.stdout.flush()

View File

@ -0,0 +1,848 @@
"""
================================================================================
This file is part of the AMUN source code, a program to perform
Newtonian or relativistic magnetohydrodynamical simulations on uniform or
adaptive mesh.
Copyright (C) 2018-2021 Grzegorz Kowal <grzegorz@amuncode.org>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
================================================================================
module: AMUN
Python module with subroutines to read AMUN code HDF5 files.
The only requirements for this package are:
- h5py
- numpy
--------------------------------------------------------------------------------
"""
#===============================================================================
'''
DEPRECATED FUNCTIONS
'''
def amun_compatible(fname):
'''
Subroutine checks if the HDF5 file is AMUN compatible.
Arguments:
fname - the HDF5 file name;
Return values:
True or False;
Examples:
comp = amun_compatible('p000010_00000.h5')
'''
from warnings import warn
import h5py as h5
warn('This function is deprecated', DeprecationWarning, stacklevel=2)
with h5.File(fname, 'r') as f:
if 'codes' in f.attrs:
if f.attrs['code'].astype(str) == "AMUN":
return True
else:
print("'%s' contains attribute 'code'," % fname, \
" but it is not 'AMUN'!")
return False
elif 'attributes' in f and 'coordinates' in f and \
'variables' in f:
return True
else:
print("'%s' misses one of these groups:" % fname, \
"'attributes', 'coordinates' or 'variables'!")
return False
def amun_attribute(fname, aname):
'''
Subroutine to read global attributes from AMUN HDF5 snapshots.
Arguments:
fname - the HDF5 file name;
aname - the attribute name;
Return values:
ret - the value of the attribute or None;
Examples:
time = amun_attribute('p000010_00000.h5', 'time')
'''
from warnings import warn
import h5py as h5
import numpy as np
warn('This function is deprecated', DeprecationWarning, stacklevel=2)
if not amun_compatible(fname):
return None
with h5.File(fname, 'r') as f:
if aname in f['attributes'].attrs:
attr = f['attributes'].attrs[aname]
if attr.dtype.type is np.string_:
ret = np.squeeze(attr).astype(str)
else:
ret = np.squeeze(attr)
return ret
else:
print("Attribute '%s' cannot be found in '%s'!" % (aname, fname))
return None
def amun_coordinate(fname, iname):
'''
Subroutine to read coordinate items from AMUN HDF5 snapshots.
Arguments:
fname - the HDF5 file name;
iname - the item name;
Return values:
ret - the value of the item or None;
Examples:
bounds = amun_coordinate('p000010_00000.h5', 'bounds')
'''
from warnings import warn
import h5py as h5
import numpy as np
warn('This function is deprecated', DeprecationWarning, stacklevel=2)
if not amun_compatible(fname):
return None
with h5.File(fname, 'r') as f:
if iname in f['coordinates']:
return np.array(f['coordinates'][iname])
else:
print("Coordinate item '%s' not found in group 'coordinate' of '%s'!" % (iname, fname))
return None
def amun_dataset(fname, vname, shrink=1, interpolation='rebin', order=3, progress=False):
'''
Subroutine to read datasets from AMUN HDF5 snapshots.
Arguments:
fname - the HDF5 file name;
vname - the variable name;
shrink - the shrink factor (must be the power of 2 and not larger
than the block size);
progress - the progress bar switch;
Return values:
ret - the array of values for the variable;
Examples:
dn = amun_dataset('p000010_00000.h5', 'dens')
'''
from .interpolation import interpolate
from warnings import warn
import h5py as h5
import numpy as np
import os, sys
warn('This function is deprecated', DeprecationWarning, stacklevel=2)
if not amun_compatible(fname):
return None
dname = os.path.dirname(fname)
if progress:
sys.stdout.write("Data file path:\n '%s'\n" % (dname))
# get attributes necessary to reconstruct the domain
#
eqsys = amun_attribute(fname, 'eqsys')
eos = amun_attribute(fname, 'eos')
nr = amun_attribute(fname, 'isnap')
nc = amun_attribute(fname, 'nprocs')
nl = amun_attribute(fname, 'nleafs')
if eos == 'adi':
gm = amun_attribute(fname, 'adiabatic_index')
# get block dimensions and the maximum level
#
ndims = amun_attribute(fname, 'ndims')
nn = amun_attribute(fname, 'ncells')
bm = np.array([nn, nn, nn])
if ndims == 2:
bm[2] = 1
ng = amun_attribute(fname, 'nghosts')
ml = amun_attribute(fname, 'maxlev')
# get the base block dimensions
#
rm = amun_attribute(fname, 'bdims')
if rm is None:
rm = amun_attribute(fname, 'domain_base_dims')
if rm is None:
rm = amun_attribute(fname, 'rdims')
if rm is None:
return None
# build the list of supported variables
#
variables = []
with h5.File(fname, 'r') as f:
for var in f['variables'].keys():
variables.append(var)
# add derived variables if possible
#
variables.append('level')
if 'velx' in variables and 'vely' in variables and 'velz' in variables:
variables.append('velo')
variables.append('divv')
variables.append('vort')
if 'magx' in variables and 'magy' in variables and 'magz' in variables:
variables.append('magn')
variables.append('divb')
variables.append('curr')
if (eqsys == 'hd' or eqsys == 'mhd') and eos == 'adi' \
and 'pres' in variables:
variables.append('eint')
if 'dens' in variables and 'pres' in variables:
variables.append('temp')
if (eqsys == 'hd' or eqsys == 'mhd') \
and 'dens' in variables \
and 'velx' in variables \
and 'vely' in variables \
and 'velz' in variables:
variables.append('ekin')
if (eqsys == 'mhd' or eqsys == 'srmhd') \
and 'magx' in variables \
and 'magy' in variables \
and 'magz' in variables:
variables.append('emag')
if eqsys == 'hd' and 'ekin' in variables and 'eint' in variables:
variables.append('etot')
if eqsys == 'mhd' and 'eint' in variables \
and 'ekin' in variables \
and 'emag' in variables:
variables.append('etot')
if (eqsys == 'srhd' or eqsys == 'srmhd') and 'velo' in variables:
variables.append('lore')
# check if the requested variable is in the variable list
#
if not vname in variables:
print('The requested variable cannot be extracted from the file datasets!')
return None
# check if the shrink parameter is correct (block dimensions should be
# divisible by the shrink factor)
#
shrink = max(1, int(shrink))
if shrink > 1:
if (nn % shrink) != 0:
print('The block dimension should be divisible by the shrink factor!')
return None
sh = shrink
while(sh > 2 and sh % 2 == 0):
sh = int(sh / 2)
if (sh % 2) != 0:
print('The shrink factor should be a power of 2!')
return None
# determine the actual maximum level from the blocks
#
levs = []
for n in range(nc):
fname = 'p%06d_%05d.h5' % (nr, n)
lname = os.path.join(dname, fname)
dblocks = amun_attribute(lname, 'dblocks')
if dblocks > 0:
levs = np.append(levs, [amun_coordinate(lname, 'levels')])
ml = int(levs.max())
# prepare dimensions of the output array and allocate it
#
dm = np.array(rm[0:ndims] * bm[0:ndims] * 2**(ml - 1) / shrink, \
dtype=np.int32)
ret = np.zeros(dm[::-1])
# iterate over all subdomain files
#
nb = 0
for n in range(nc):
fname = 'p%06d_%05d.h5' % (nr, n)
lname = os.path.join(dname, fname)
dblocks = amun_attribute(lname, 'dblocks')
if dblocks > 0:
levels = amun_coordinate(lname, 'levels')
coords = amun_coordinate(lname, 'coords')
dx = amun_coordinate(lname, 'dx')
dy = amun_coordinate(lname, 'dy')
dz = amun_coordinate(lname, 'dz')
with h5.File(lname, 'r') as f:
g = f['variables']
if vname == 'level':
dataset = np.zeros(g[variables[0]].shape)
for l in range(dblocks):
dataset[:,:,:,l] = levels[l]
elif vname == 'velo':
dataset = np.sqrt(g['velx'][:,:,:,:]**2 \
+ g['vely'][:,:,:,:]**2 \
+ g['velz'][:,:,:,:]**2)
elif vname == 'magn':
dataset = np.sqrt(g['magx'][:,:,:,:]**2 \
+ g['magy'][:,:,:,:]**2 \
+ g['magz'][:,:,:,:]**2)
elif vname == 'eint':
dataset = 1.0 / (gm - 1.0) * g['pres'][:,:,:,:]
elif vname == 'ekin':
dataset = 0.5 * g['dens'][:,:,:,:] * (g['velx'][:,:,:,:]**2 \
+ g['vely'][:,:,:,:]**2 \
+ g['velz'][:,:,:,:]**2)
elif vname == 'emag':
dataset = 0.5 * (g['magx'][:,:,:,:]**2 \
+ g['magy'][:,:,:,:]**2 \
+ g['magz'][:,:,:,:]**2)
elif vname == 'etot':
dataset = 1.0 / (gm - 1.0) * g['pres'][:,:,:,:] \
+ 0.5 * g['dens'][:,:,:,:] * (g['velx'][:,:,:,:]**2 \
+ g['vely'][:,:,:,:]**2 \
+ g['velz'][:,:,:,:]**2)
if eqsys == 'mhd':
dataset += 0.5 * (g['magx'][:,:,:,:]**2 \
+ g['magy'][:,:,:,:]**2 \
+ g['magz'][:,:,:,:]**2)
elif vname == 'temp':
dataset = g['pres'][:,:,:,:] / g['dens'][:,:,:,:]
elif vname == 'lore':
dataset = 1.0 / np.sqrt(1.0 - (g['velx'][:,:,:,:]**2 \
+ g['vely'][:,:,:,:]**2 \
+ g['velz'][:,:,:,:]**2))
elif vname == 'divv':
dataset = np.zeros(g['velx'].shape)
fields = [ 'velx', 'vely', 'velz' ]
h = (dx, dy, dz)
for i in range(ndims):
v = fields[i]
dataset += 0.5 * (np.roll(g[v][:,:,:,:], -1, axis=2) \
- np.roll(g[v][:,:,:,:], 1, axis=2)) \
/ h[i][levels[:] - 1]
elif vname == 'divb':
dataset = np.zeros(g['magx'].shape)
fields = [ 'magx', 'magy', 'magz' ]
h = (dx, dy, dz)
for i in range(ndims):
v = fields[i]
dataset += 0.5 * (np.roll(g[v][:,:,:,:], -1, axis=2) \
- np.roll(g[v][:,:,:,:], 1, axis=2)) \
/ h[i][levels[:] - 1]
elif vname == 'vort':
if ndims == 3:
wx = 0.5 * (np.roll(g['velz'][:,:,:,:], -1, axis=1) \
- np.roll(g['velz'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1] \
- 0.5 * (np.roll(g['vely'][:,:,:,:], -1, axis=0) \
- np.roll(g['vely'][:,:,:,:], 1, axis=0)) \
/ dz[levels[:]-1]
wy = 0.5 * (np.roll(g['velx'][:,:,:,:], -1, axis=0) \
- np.roll(g['velx'][:,:,:,:], 1, axis=0)) \
/ dz[levels[:]-1] \
- 0.5 * (np.roll(g['velz'][:,:,:,:], -1, axis=2) \
- np.roll(g['velz'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1]
wz = 0.5 * (np.roll(g['vely'][:,:,:,:], -1, axis=2) \
- np.roll(g['vely'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1] \
- 0.5 * (np.roll(g['velx'][:,:,:,:], -1, axis=1) \
- np.roll(g['velx'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1]
else:
wx = 0.5 * (np.roll(g['velz'][:,:,:,:], -1, axis=1) \
- np.roll(g['velz'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1]
wy = - 0.5 * (np.roll(g['velz'][:,:,:,:], -1, axis=2) \
- np.roll(g['velz'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1]
wz = 0.5 * (np.roll(g['vely'][:,:,:,:], -1, axis=2) \
- np.roll(g['vely'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1] \
- 0.5 * (np.roll(g['velx'][:,:,:,:], -1, axis=1) \
- np.roll(g['velx'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1]
dataset = np.sqrt(wx * wx + wy * wy + wz * wz)
elif vname == 'curr':
if ndims == 3:
wx = 0.5 * (np.roll(g['magz'][:,:,:,:], -1, axis=1) \
- np.roll(g['magz'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1] \
- 0.5 * (np.roll(g['magy'][:,:,:,:], -1, axis=0) \
- np.roll(g['magy'][:,:,:,:], 1, axis=0)) \
/ dz[levels[:]-1]
wy = 0.5 * (np.roll(g['magx'][:,:,:,:], -1, axis=0) \
- np.roll(g['magx'][:,:,:,:], 1, axis=0)) \
/ dz[levels[:]-1] \
- 0.5 * (np.roll(g['magz'][:,:,:,:], -1, axis=2) \
- np.roll(g['magz'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1]
wz = 0.5 * (np.roll(g['magy'][:,:,:,:], -1, axis=2) \
- np.roll(g['magy'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1] \
- 0.5 * (np.roll(g['magx'][:,:,:,:], -1, axis=1) \
- np.roll(g['magx'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1]
else:
wx = 0.5 * (np.roll(g['magz'][:,:,:,:], -1, axis=1) \
- np.roll(g['magz'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1]
wy = - 0.5 * (np.roll(g['magz'][:,:,:,:], -1, axis=2) \
- np.roll(g['magz'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1]
wz = 0.5 * (np.roll(g['magy'][:,:,:,:], -1, axis=2) \
- np.roll(g['magy'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1] \
- 0.5 * (np.roll(g['magx'][:,:,:,:], -1, axis=1) \
- np.roll(g['magx'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1]
dataset = np.sqrt(wx * wx + wy * wy + wz * wz)
else:
dataset = g[vname][:,:,:,:]
# rescale all blocks to the effective resolution
#
for l in range(dblocks):
nn = 2**(ml - levels[l])
if nn <= shrink:
method = 'rebin'
else:
method = interpolation
cm = np.array(bm[0:ndims] * nn / shrink, dtype=np.int32)
ibeg = coords[0:ndims,l] * cm[0:ndims]
iend = ibeg + cm[0:ndims]
if ndims == 3:
ib, jb, kb = ibeg[0], ibeg[1], ibeg[2]
ie, je, ke = iend[0], iend[1], iend[2]
ret[kb:ke,jb:je,ib:ie] = interpolate(dataset[:,:,:,l], cm, ng, method=method, order=order)
else:
ib, jb = ibeg[0], ibeg[1]
ie, je = iend[0], iend[1]
ret[jb:je,ib:ie] = interpolate(dataset[0,:,:,l], cm, ng, method=method, order=order)
nb += 1
# print progress bar if desired
#
if progress:
sys.stdout.write('\r')
sys.stdout.write("Reading '%s' from '%s': block %d from %d" \
% (vname, fname, nb, nl))
sys.stdout.flush()
if (progress):
sys.stdout.write('\n')
sys.stdout.flush()
return ret
def amun_dataset_vtk(fname, vname, label=None, compression=None, compression_level=19, progress=False):
'''
Subroutine to convert a dataset specified by argument 'vname' from
the AMUN HDF5 snapshot to OverlappedAMR VTK file.
Arguments:
fname - the HDF5 file name;
vname - the variable name;
label - the variable label (long name);
compression - the compression type: 'lz4', 'zlib', 'lzma'
progress - the progress bar switch;
Examples:
dn = amun_dataset_vtk('p000010_00000.h5', 'dens')
'''
from .octree import OcBase, OcNode
from .vtkio import WriteVTK
from warnings import warn
import numpy as np
import os, sys
warn('This function is deprecated', DeprecationWarning, stacklevel=2)
if not amun_compatible(fname):
return None
if amun_attribute(fname, 'ndims') < 3:
print('Subroutine amun_dataset_vtk() supports only 3D domains.')
return None
if label == None:
label = vname
dname = os.path.dirname(fname)
if progress:
sys.stdout.write("Data file path:\n '%s'\n" % (dname))
# get attributes necessary to reconstruct the domain
#
eqsys = amun_attribute(fname, 'eqsys')
eos = amun_attribute(fname, 'eos')
nr = amun_attribute(fname, 'isnap')
nc = amun_attribute(fname, 'nprocs')
nl = amun_attribute(fname, 'nleafs')
if eos == 'adi':
gm = amun_attribute(fname, 'adiabatic_index')
# get block dimensions and the maximum level
#
ndims = amun_attribute(fname, 'ndims')
nn = amun_attribute(fname, 'ncells')
bm = np.array([nn, nn, nn])
ng = amun_attribute(fname, 'nghosts')
ml = amun_attribute(fname, 'maxlev')
# get the base block dimensions
#
rm = amun_attribute(fname, 'bdims')
if rm is None:
rm = amun_attribute(fname, 'domain_base_dims')
if rm is None:
rm = amun_attribute(fname, 'rdims')
if rm is None:
return None
# get domain bounds
#
xmin = amun_attribute(fname, 'xmin')
ymin = amun_attribute(fname, 'ymin')
zmin = amun_attribute(fname, 'zmin')
xlen = amun_attribute(fname, 'xmax') - xmin
ylen = amun_attribute(fname, 'ymax') - ymin
zlen = amun_attribute(fname, 'zmax') - zmin
# build the list of supported variables
#
variables = []
with h5.File(fname, 'r') as f:
for var in f['variables'].keys():
variables.append(var)
# add derived variables if possible
#
variables.append('level')
if 'velx' in variables and 'vely' in variables and 'velz' in variables:
variables.append('velo')
variables.append('divv')
variables.append('vort')
if 'magx' in variables and 'magy' in variables and 'magz' in variables:
variables.append('magn')
variables.append('divb')
variables.append('curr')
if (eqsys == 'hd' or eqsys == 'mhd') and eos == 'adi' \
and 'pres' in variables:
variables.append('eint')
if 'dens' in variables and 'pres' in variables:
variables.append('temp')
if (eqsys == 'hd' or eqsys == 'mhd') \
and 'dens' in variables \
and 'velx' in variables \
and 'vely' in variables \
and 'velz' in variables:
variables.append('ekin')
if (eqsys == 'mhd' or eqsys == 'srmhd') \
and 'magx' in variables \
and 'magy' in variables \
and 'magz' in variables:
variables.append('emag')
if eqsys == 'hd' and 'ekin' in variables and 'eint' in variables:
variables.append('etot')
if eqsys == 'mhd' and 'eint' in variables \
and 'ekin' in variables \
and 'emag' in variables:
variables.append('etot')
if (eqsys == 'srhd' or eqsys == 'srmhd') and 'velo' in variables:
variables.append('lore')
# check if the requested variable is in the variable list
#
if not vname in variables:
print('The requested variable cannot be extracted from the file datasets!')
return None
# determine the actual maximum level from the blocks
#
levs = []
for n in range(nc):
fname = 'p%06d_%05d.h5' % (nr, n)
lname = os.path.join(dname, fname)
dblocks = amun_attribute(lname, 'dblocks')
if dblocks > 0:
levs = np.append(levs, [amun_coordinate(lname, 'levels')])
ml = int(levs.max())
# create octree base
base = OcBase([xmin, ymin, zmin], [xlen, ylen, zlen], rm)
# iterate over all subdomain files
#
nb = 0
for n in range(nc):
fname = 'p%06d_%05d.h5' % (nr, n)
lname = os.path.join(dname, fname)
dblocks = amun_attribute(lname, 'dblocks')
if dblocks > 0:
levels = amun_coordinate(lname, 'levels')
coords = amun_coordinate(lname, 'coords')
bounds = amun_coordinate(lname, 'bounds')
dx = amun_coordinate(lname, 'dx')
dy = amun_coordinate(lname, 'dy')
dz = amun_coordinate(lname, 'dz')
with h5.File(lname, 'r') as f:
g = f['variables']
if vname == 'level':
dataset = np.zeros(g[variables[0]].shape)
for l in range(dblocks):
dataset[:,:,:,l] = levels[l]
elif vname == 'velo':
dataset = np.sqrt(g['velx'][:,:,:,:]**2 \
+ g['vely'][:,:,:,:]**2 \
+ g['velz'][:,:,:,:]**2)
elif vname == 'magn':
dataset = np.sqrt(g['magx'][:,:,:,:]**2 \
+ g['magy'][:,:,:,:]**2 \
+ g['magz'][:,:,:,:]**2)
elif vname == 'eint':
dataset = 1.0 / (gm - 1.0) * g['pres'][:,:,:,:]
elif vname == 'ekin':
dataset = 0.5 * g['dens'][:,:,:,:] * (g['velx'][:,:,:,:]**2 \
+ g['vely'][:,:,:,:]**2 \
+ g['velz'][:,:,:,:]**2)
elif vname == 'emag':
dataset = 0.5 * (g['magx'][:,:,:,:]**2 \
+ g['magy'][:,:,:,:]**2 \
+ g['magz'][:,:,:,:]**2)
elif vname == 'etot':
dataset = 1.0 / (gm - 1.0) * g['pres'][:,:,:,:] \
+ 0.5 * g['dens'][:,:,:,:] * (g['velx'][:,:,:,:]**2 \
+ g['vely'][:,:,:,:]**2 \
+ g['velz'][:,:,:,:]**2)
if eqsys == 'mhd':
dataset += 0.5 * (g['magx'][:,:,:,:]**2 \
+ g['magy'][:,:,:,:]**2 \
+ g['magz'][:,:,:,:]**2)
elif vname == 'temp':
dataset = g['pres'][:,:,:,:] / g['dens'][:,:,:,:]
elif vname == 'lore':
dataset = 1.0 / np.sqrt(1.0 - (g['velx'][:,:,:,:]**2 \
+ g['vely'][:,:,:,:]**2 \
+ g['velz'][:,:,:,:]**2))
elif vname == 'divv':
dataset = np.zeros(g['velx'].shape)
fields = [ 'velx', 'vely', 'velz' ]
h = (dx, dy, dz)
for i in range(ndims):
v = fields[i]
dataset += 0.5 * (np.roll(g[v][:,:,:,:], -1, axis=2) \
- np.roll(g[v][:,:,:,:], 1, axis=2)) \
/ h[i][levels[:] - 1]
elif vname == 'divb':
dataset = np.zeros(g['magx'].shape)
fields = [ 'magx', 'magy', 'magz' ]
h = (dx, dy, dz)
for i in range(ndims):
v = fields[i]
dataset += 0.5 * (np.roll(g[v][:,:,:,:], -1, axis=2) \
- np.roll(g[v][:,:,:,:], 1, axis=2)) \
/ h[i][levels[:] - 1]
elif vname == 'vort':
if ndims == 3:
wx = 0.5 * (np.roll(g['velz'][:,:,:,:], -1, axis=1) \
- np.roll(g['velz'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1] \
- 0.5 * (np.roll(g['vely'][:,:,:,:], -1, axis=0) \
- np.roll(g['vely'][:,:,:,:], 1, axis=0)) \
/ dz[levels[:]-1]
wy = 0.5 * (np.roll(g['velx'][:,:,:,:], -1, axis=0) \
- np.roll(g['velx'][:,:,:,:], 1, axis=0)) \
/ dz[levels[:]-1] \
- 0.5 * (np.roll(g['velz'][:,:,:,:], -1, axis=2) \
- np.roll(g['velz'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1]
wz = 0.5 * (np.roll(g['vely'][:,:,:,:], -1, axis=2) \
- np.roll(g['vely'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1] \
- 0.5 * (np.roll(g['velx'][:,:,:,:], -1, axis=1) \
- np.roll(g['velx'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1]
else:
wx = 0.5 * (np.roll(g['velz'][:,:,:,:], -1, axis=1) \
- np.roll(g['velz'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1]
wy = - 0.5 * (np.roll(g['velz'][:,:,:,:], -1, axis=2) \
- np.roll(g['velz'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1]
wz = 0.5 * (np.roll(g['vely'][:,:,:,:], -1, axis=2) \
- np.roll(g['vely'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1] \
- 0.5 * (np.roll(g['velx'][:,:,:,:], -1, axis=1) \
- np.roll(g['velx'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1]
dataset = np.sqrt(wx * wx + wy * wy + wz * wz)
elif vname == 'curr':
if ndims == 3:
wx = 0.5 * (np.roll(g['magz'][:,:,:,:], -1, axis=1) \
- np.roll(g['magz'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1] \
- 0.5 * (np.roll(g['magy'][:,:,:,:], -1, axis=0) \
- np.roll(g['magy'][:,:,:,:], 1, axis=0)) \
/ dz[levels[:]-1]
wy = 0.5 * (np.roll(g['magx'][:,:,:,:], -1, axis=0) \
- np.roll(g['magx'][:,:,:,:], 1, axis=0)) \
/ dz[levels[:]-1] \
- 0.5 * (np.roll(g['magz'][:,:,:,:], -1, axis=2) \
- np.roll(g['magz'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1]
wz = 0.5 * (np.roll(g['magy'][:,:,:,:], -1, axis=2) \
- np.roll(g['magy'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1] \
- 0.5 * (np.roll(g['magx'][:,:,:,:], -1, axis=1) \
- np.roll(g['magx'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1]
else:
wx = 0.5 * (np.roll(g['magz'][:,:,:,:], -1, axis=1) \
- np.roll(g['magz'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1]
wy = - 0.5 * (np.roll(g['magz'][:,:,:,:], -1, axis=2) \
- np.roll(g['magz'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1]
wz = 0.5 * (np.roll(g['magy'][:,:,:,:], -1, axis=2) \
- np.roll(g['magy'][:,:,:,:], 1, axis=2)) \
/ dx[levels[:]-1] \
- 0.5 * (np.roll(g['magx'][:,:,:,:], -1, axis=1) \
- np.roll(g['magx'][:,:,:,:], 1, axis=1)) \
/ dy[levels[:]-1]
dataset = np.sqrt(wx * wx + wy * wy + wz * wz)
else:
dataset = g[vname][:,:,:,:]
# rescale all blocks to the effective resolution
#
for l in range(dblocks):
lv = levels[l] - 1
center = (bounds[0,:,l] + bounds[1,:,l]) / 2
base.createNodeBranch(center, lv)
base.setNodeData(center, lv, dataset[ng:-ng,ng:-ng,ng:-ng,l])
nb += 1
# print progress bar if desired
#
if progress:
sys.stdout.write('\r')
sys.stdout.write("Reading '%s' from '%s': block %d from %d" \
% (vname, fname, nb, nl))
sys.stdout.flush()
if (progress):
sys.stdout.write('\n')
sys.stdout.flush()
if progress:
sys.stdout.write("Populating AMR structure\n")
base.populateNodeData()
if progress:
sys.stdout.write("Generating OverlappingAMR VTK files\n")
ofile = "{}_{:06d}.vthb".format(vname, nr)
opath = "{}_{:06d}".format(vname, nr)
if not os.path.exists(opath):
os.makedirs(opath)
with open(ofile, 'w') as vtk:
vtk.write('<VTKFile type="vtkOverlappingAMR" version="1.1" ' + \
'byte_order="LittleEndian" header_type="UInt64">\n')
vtk.write(' <vtkOverlappingAMR ' + \
'origin="{} {} {}" '.format(*base.lower) + \
'grid_description="XYZ">\n')
fmt = '{}_{:0' + str(len(str(ml))) + '}_{:0' + str(len(str(base.nodes))) + 'd}.vti'
m = 0
for lv in range(ml):
cw = base.size / (rm * nn * 2**lv)
vtk.write(' <Block level="{}"'.format(lv) + \
' spacing="{} {} {}">\n'.format(*cw))
no = 0
for item in base.getNodesFromLevel(lv):
lo = np.array(item.index) * bm
up = lo + bm - 1
ll = np.stack((lo,up)).T.flatten()
if item.hasData:
vfile = os.path.join(opath, fmt.format(vname, lv, no))
WriteVTK(vfile, label, item.data, \
origin = (item.lower[0], item.lower[1], item.lower[2]), \
spacing = (cw[0], cw[1], cw[2]), \
compression=compression, compression_level=compression_level)
vtk.write(' <DataSet index="{}"'.format(no) + \
' amr_box = "{} {} {} {} {} {}"'.format(*ll) + \
' file = "{}"></DataSet>\n'.format(vfile))
no += 1
else:
vtk.write(' <DataSet index="{}"'.format(no) + \
' amr_box = "{} {} {} {} {} {}"'.format(*ll) + \
'></DataSet>\n')
m += 1
if progress:
sys.stdout.write('\r')
sys.stdout.write("Storing AMR block {} from {}".format(m, base.nodes))
sys.stdout.flush()
vtk.write(' </Block>\n')
vtk.write(' </vtkOverlappingAMR>\n')
vtk.write('</VTKFile>')
if (progress):
sys.stdout.write('\n')
sys.stdout.flush()