PROBLEMS: Implement Sedov-Taylor blast problem.
Signed-off-by: Grzegorz Kowal <grzegorz@amuncode.org>
This commit is contained in:
parent
1a04260167
commit
2feb69e6b4
62
problems/sedov.in
Normal file
62
problems/sedov.in
Normal file
@ -0,0 +1,62 @@
|
||||
# problem name and parameters
|
||||
#
|
||||
problem = "sedov-taylor"
|
||||
gamma = 1.4d+00
|
||||
|
||||
# physics
|
||||
#
|
||||
equation_system = "hd"
|
||||
equation_of_state = "adi"
|
||||
|
||||
# methods
|
||||
#
|
||||
time_advance = "rk2"
|
||||
riemann_solver = "hll"
|
||||
reconstruction = "tvd"
|
||||
limiter = "mc"
|
||||
fix_positivity = "off"
|
||||
clip_extrema = "off"
|
||||
|
||||
# mesh parameters
|
||||
#
|
||||
xmin = -5.00d-01
|
||||
xmax = 5.00d-01
|
||||
ymin = -5.00d-01
|
||||
ymax = 5.00d-01
|
||||
zmin = -5.00d-01
|
||||
zmax = 5.00d-01
|
||||
|
||||
# refinement control
|
||||
#
|
||||
xblocks = 2
|
||||
yblocks = 2
|
||||
ncells = 16
|
||||
nghosts = 4
|
||||
minlev = 1
|
||||
maxlev = 4
|
||||
crefmin = 2.00d-01
|
||||
crefmax = 8.00d-01
|
||||
epsref = 1.00d-02
|
||||
refinement_variables = "dens pres"
|
||||
|
||||
# boundary conditions
|
||||
#
|
||||
xlbndry = "periodic"
|
||||
xubndry = "periodic"
|
||||
ylbndry = "periodic"
|
||||
yubndry = "periodic"
|
||||
zlbndry = "periodic"
|
||||
zubndry = "periodic"
|
||||
|
||||
# runtime control parameters
|
||||
#
|
||||
tmax = 2.00d-01
|
||||
cfl = 4.00d-01
|
||||
|
||||
# data output control
|
||||
#
|
||||
precise_snapshots = "on"
|
||||
snapshot_type = "p"
|
||||
snapshot_interval = 1.0d-02
|
||||
restart_number = -1
|
||||
integrals_interval = 10
|
467
src/problems.F90
467
src/problems.F90
@ -135,6 +135,9 @@ module problems
|
||||
case("blast")
|
||||
setup_problem => setup_problem_blast
|
||||
|
||||
case("st", "sedov-taylor", "ST", "Sedov-Taylor")
|
||||
setup_problem => setup_problem_sedov_taylor
|
||||
|
||||
case("implosion")
|
||||
setup_problem => setup_problem_implosion
|
||||
|
||||
@ -784,6 +787,470 @@ module problems
|
||||
!
|
||||
!===============================================================================
|
||||
!
|
||||
! subroutine SETUP_PROBLEM_SEDOV_TAYLOR:
|
||||
! -------------------------------------
|
||||
!
|
||||
! Subroutine sets the initial conditions for the spherical Sedov-Taylor
|
||||
! blast problem.
|
||||
!
|
||||
! Arguments:
|
||||
!
|
||||
! pdata - pointer to the datablock structure of the currently initialized
|
||||
! block;
|
||||
!
|
||||
! References:
|
||||
!
|
||||
! [1] Almgren, A. S. et al.,
|
||||
! "CASTRO: A New Compressible Astrophysical Solver.
|
||||
! I. Hydrodynamics and Self-Gravity",
|
||||
! The Astrophysical Journal, 2010, vol. 715, pp. 1221-1238,
|
||||
! http://dx.doi.org/10.1088/0004-637X/715/2/1221
|
||||
!
|
||||
!===============================================================================
|
||||
!
|
||||
subroutine setup_problem_sedov_taylor(pdata)
|
||||
|
||||
! include external procedures and variables
|
||||
!
|
||||
use blocks , only : block_data
|
||||
use constants , only : pi, pi4, d2r
|
||||
use coordinates, only : im, jm, km
|
||||
use coordinates, only : ax, ay, az, adx, ady, adz, advol
|
||||
use equations , only : prim2cons
|
||||
use equations , only : gamma
|
||||
use equations , only : nv
|
||||
use equations , only : idn, ivx, ivy, ivz, ipr, ibx, iby, ibz, ibp
|
||||
use error , only : print_error
|
||||
use parameters , only : get_parameter_real, get_parameter_integer
|
||||
|
||||
! local variables are not implicit by default
|
||||
!
|
||||
implicit none
|
||||
|
||||
! input arguments
|
||||
!
|
||||
type(block_data), pointer, intent(inout) :: pdata
|
||||
|
||||
! default parameter values
|
||||
!
|
||||
real(kind=8), save :: radius = 1.00d-02
|
||||
real(kind=8), save :: dens = 1.00d+00
|
||||
real(kind=8), save :: pres = 1.00d-05
|
||||
real(kind=8), save :: eexp = 1.00d+00
|
||||
real(kind=8), save :: buni = 0.00d+00
|
||||
real(kind=8), save :: angle = 0.00d+00
|
||||
#if NDIMS == 3
|
||||
integer , save :: nsubgrid = 10
|
||||
#endif /* NDIMS == 3 */
|
||||
|
||||
! local saved parameters
|
||||
!
|
||||
logical , save :: first = .true.
|
||||
real(kind=8), save :: dn_amb, dn_ovr
|
||||
real(kind=8), save :: pr_amb, pr_ovr
|
||||
real(kind=8), save :: bx, by
|
||||
real(kind=8), save :: r2
|
||||
|
||||
! local variables
|
||||
!
|
||||
integer :: i, j, k, ic, jc, kc
|
||||
real(kind=8) :: xl, yl, zl, xu, yu, zu, rl, ru
|
||||
real(kind=8) :: sn
|
||||
#if NDIMS == 3
|
||||
real(kind=8) :: xb, yb, zb
|
||||
real(kind=8) :: xt, yt, zt
|
||||
real(kind=8) :: fc_inc
|
||||
#else /* NDIMS == 3 */
|
||||
real(kind=8) :: rlu, rul
|
||||
real(kind=8) :: xb, yb
|
||||
real(kind=8) :: xt, yt
|
||||
real(kind=8) :: ph
|
||||
#endif /* NDIMS == 3 */
|
||||
real(kind=8) :: dx, dy, dz, dxh, dyh, dzh, dvol
|
||||
real(kind=8) :: fc_amb, fc_ovr
|
||||
|
||||
! local arrays
|
||||
!
|
||||
real(kind=8), dimension(nv,im) :: q, u
|
||||
real(kind=8), dimension(im) :: x
|
||||
real(kind=8), dimension(jm) :: y
|
||||
real(kind=8), dimension(km) :: z
|
||||
|
||||
#if NDIMS == 3
|
||||
! allocatable arrays
|
||||
!
|
||||
real(kind=8), dimension(:), allocatable :: xm, ym, zm
|
||||
real(kind=8), dimension(:), allocatable :: xp, yp, zp
|
||||
#endif /* NDIMS == 3 */
|
||||
!
|
||||
!-------------------------------------------------------------------------------
|
||||
!
|
||||
! quit if no adiabatic equation of state
|
||||
!
|
||||
if (ipr <= 0) then
|
||||
call print_error("problems::setup_problem_sedov_taylor" &
|
||||
, "Only adiabatic equation of state is supported!")
|
||||
stop
|
||||
end if
|
||||
|
||||
#ifdef PROFILE
|
||||
! start accounting time for the problem setup
|
||||
!
|
||||
call start_timer(imu)
|
||||
#endif /* PROFILE */
|
||||
|
||||
! prepare problem constants during the first subroutine call
|
||||
!
|
||||
if (first) then
|
||||
|
||||
! get problem parameters
|
||||
!
|
||||
call get_parameter_real("radius", radius)
|
||||
call get_parameter_real("dens" , dens )
|
||||
call get_parameter_real("pres" , pres )
|
||||
call get_parameter_real("eexp" , eexp )
|
||||
call get_parameter_real("buni" , buni )
|
||||
call get_parameter_real("angle" , angle )
|
||||
|
||||
#if NDIMS == 3
|
||||
! get the fine grid resolution
|
||||
!
|
||||
call get_parameter_integer("nsubgrid", nsubgrid)
|
||||
|
||||
! correct subgrid resolution if necessary
|
||||
!
|
||||
nsubgrid = max(1, nsubgrid)
|
||||
#endif /* NDIMS == 3 */
|
||||
|
||||
! calculate the volume of the injection region
|
||||
!
|
||||
#if NDIMS == 3
|
||||
dvol = pi4 * radius**3 / 3.0d+00
|
||||
#else /* NDIMS == 3 */
|
||||
dvol = pi * radius**2
|
||||
#endif /* NDIMS == 3 */
|
||||
|
||||
! calculate the overdense and ambient region densities and pressures
|
||||
!
|
||||
dn_amb = dens
|
||||
dn_ovr = dn_amb
|
||||
pr_amb = pres
|
||||
pr_ovr = (gamma - 1.0d+00) * eexp / dvol
|
||||
|
||||
! calculate initial uniform field components
|
||||
!
|
||||
if (ibx > 0) then
|
||||
sn = sin(d2r * angle)
|
||||
bx = buni * sqrt(1.0d+00 - sn * sn)
|
||||
by = buni * sn
|
||||
end if
|
||||
|
||||
! calculate the square of radius
|
||||
!
|
||||
r2 = radius * radius
|
||||
|
||||
! reset the first execution flag
|
||||
!
|
||||
first = .false.
|
||||
|
||||
end if ! first call
|
||||
|
||||
! prepare block coordinates
|
||||
!
|
||||
x(1:im) = pdata%meta%xmin + ax(pdata%meta%level,1:im)
|
||||
y(1:jm) = pdata%meta%ymin + ay(pdata%meta%level,1:jm)
|
||||
#if NDIMS == 3
|
||||
z(1:km) = pdata%meta%zmin + az(pdata%meta%level,1:km)
|
||||
#else /* NDIMS == 3 */
|
||||
z(1:km) = 0.0d+00
|
||||
#endif /* NDIMS == 3 */
|
||||
|
||||
! calculate mesh intervals and areas
|
||||
!
|
||||
dx = adx(pdata%meta%level)
|
||||
dy = ady(pdata%meta%level)
|
||||
dz = adz(pdata%meta%level)
|
||||
dxh = 0.5d+00 * dx
|
||||
dyh = 0.5d+00 * dy
|
||||
#if NDIMS == 3
|
||||
dzh = 0.5d+00 * dz
|
||||
#else /* NDIMS == 3 */
|
||||
dzh = 1.0d+00
|
||||
#endif /* NDIMS == 3 */
|
||||
dvol = advol(pdata%meta%level)
|
||||
|
||||
#if NDIMS == 3
|
||||
! allocate subgrid coordinates
|
||||
!
|
||||
allocate(xm(nsubgrid), ym(nsubgrid), zm(nsubgrid))
|
||||
allocate(xp(nsubgrid), yp(nsubgrid), zp(nsubgrid))
|
||||
|
||||
! and generate them
|
||||
!
|
||||
xm(:) = (1.0d+00 * (/(i, i = 0, nsubgrid - 1)/)) / nsubgrid
|
||||
ym(:) = xm(:)
|
||||
zm(:) = xm(:)
|
||||
xm(:) = xm(:) * dx
|
||||
ym(:) = ym(:) * dy
|
||||
zm(:) = zm(:) * dz
|
||||
xp(:) = (1.0d+00 * (/(i, i = 1, nsubgrid )/)) / nsubgrid
|
||||
yp(:) = xp(:)
|
||||
zp(:) = xp(:)
|
||||
xp(:) = xp(:) * dx
|
||||
yp(:) = yp(:) * dy
|
||||
zp(:) = zp(:) * dz
|
||||
|
||||
! calculate the factor increment for the given subgrid
|
||||
!
|
||||
fc_inc = dvol / nsubgrid**3
|
||||
#endif /* NDIMS == 3 */
|
||||
|
||||
! set density and pressure of the ambient
|
||||
!
|
||||
q(idn,:) = dn_amb
|
||||
q(ipr,:) = pr_amb
|
||||
|
||||
! reset velocity components
|
||||
!
|
||||
q(ivx,:) = 0.0d+00
|
||||
q(ivy,:) = 0.0d+00
|
||||
q(ivz,:) = 0.0d+00
|
||||
|
||||
! if magnetic field is present, set it to be uniform with the desired strength
|
||||
! and orientation
|
||||
!
|
||||
if (ibx > 0) then
|
||||
|
||||
q(ibx,:) = bx
|
||||
q(iby,:) = by
|
||||
q(ibz,:) = 0.0d+00
|
||||
q(ibp,:) = 0.0d+00
|
||||
|
||||
end if
|
||||
|
||||
! iterate over all positions in the YZ plane
|
||||
!
|
||||
do k = 1, km
|
||||
|
||||
#if NDIMS == 3
|
||||
! calculate the corner Z coordinates
|
||||
!
|
||||
zl = abs(z(k)) - dzh
|
||||
zu = abs(z(k)) + dzh
|
||||
#endif /* NDIMS == 3 */
|
||||
|
||||
do j = 1, jm
|
||||
|
||||
! calculate the corner Y coordinates
|
||||
!
|
||||
yl = abs(y(j)) - dyh
|
||||
yu = abs(y(j)) + dyh
|
||||
|
||||
! sweep along the X coordinate
|
||||
!
|
||||
do i = 1, im
|
||||
|
||||
! calculate the corner X coordinates
|
||||
!
|
||||
xl = abs(x(i)) - dxh
|
||||
xu = abs(x(i)) + dxh
|
||||
|
||||
! calculate the minimum and maximum corner distances from the origin
|
||||
!
|
||||
#if NDIMS == 3
|
||||
rl = xl * xl + yl * yl + zl * zl
|
||||
ru = xu * xu + yu * yu + zu * zu
|
||||
#else /* NDIMS == 3 */
|
||||
rl = xl * xl + yl * yl
|
||||
ru = xu * xu + yu * yu
|
||||
#endif /* NDIMS == 3 */
|
||||
|
||||
! set the initial density and pressure in cells laying completely within
|
||||
! the blast radius
|
||||
!
|
||||
if (ru <= r2) then
|
||||
|
||||
! set density and pressure for the overpressure region
|
||||
!
|
||||
q(idn,i) = dn_ovr
|
||||
q(ipr,i) = pr_ovr
|
||||
|
||||
! set the initial pressure in the cell completely outside the radius
|
||||
!
|
||||
else if (rl >= r2) then
|
||||
|
||||
! set density and pressure of the ambient
|
||||
!
|
||||
q(idn,i) = dn_amb
|
||||
q(ipr,i) = pr_amb
|
||||
|
||||
! integrate density or pressure in cells which are crossed by the circule with
|
||||
! the given radius
|
||||
!
|
||||
else
|
||||
|
||||
#if NDIMS == 3
|
||||
! interpolate the factor using subgrid
|
||||
!
|
||||
fc_ovr = 0.0d+00
|
||||
do kc = 1, nsubgrid
|
||||
zb = (zl + zm(kc))**2
|
||||
zt = (zl + zp(kc))**2
|
||||
do jc = 1, nsubgrid
|
||||
yb = (yl + ym(jc))**2
|
||||
yt = (yl + yp(jc))**2
|
||||
do ic = 1, nsubgrid
|
||||
xb = (xl + xm(ic))**2
|
||||
xt = (xl + xp(ic))**2
|
||||
|
||||
! update the integration factor depending on the subcell position
|
||||
!
|
||||
if ((xt + yt + zt) <= r2) then
|
||||
fc_ovr = fc_ovr + fc_inc
|
||||
else if ((xb + yb + zb) < r2) then
|
||||
fc_ovr = fc_ovr + 0.5d+00 * fc_inc
|
||||
end if
|
||||
|
||||
end do ! ic = 1, nsubgrid
|
||||
end do ! jc = 1, nsubgrid
|
||||
end do ! kc = 1, nsubgrid
|
||||
#else /* NDIMS == 3 */
|
||||
|
||||
! calculate the distance of remaining corners
|
||||
!
|
||||
rlu = xl * xl + yu * yu
|
||||
rul = xu * xu + yl * yl
|
||||
|
||||
! separate in the cases of which corners lay inside, and which outside
|
||||
! the radius
|
||||
!
|
||||
if (min(rlu, rul) >= r2) then
|
||||
|
||||
! only one cell corner inside the radius
|
||||
!
|
||||
! calculate middle coordinates of the radius-edge crossing point
|
||||
!
|
||||
xb = sqrt(r2 - yl**2) - xl
|
||||
yb = sqrt(r2 - xl**2) - yl
|
||||
|
||||
! calculate the sin(½φ), φ, and sin(φ)
|
||||
!
|
||||
sn = 0.5d+00 * sqrt(xb**2 + yb**2) / radius
|
||||
ph = 2.0d+00 * asin(sn)
|
||||
sn = sin(ph)
|
||||
|
||||
! calculate the area of cell intersection with the radius
|
||||
!
|
||||
fc_ovr = 0.5d+00 * (xb * yb + (ph - sn) * r2)
|
||||
|
||||
else if (rlu >= r2) then
|
||||
|
||||
! two lower corners inside the radius
|
||||
!
|
||||
! calculate middle coordinates of the radius-edge crossing point
|
||||
!
|
||||
yb = sqrt(r2 - xl**2) - yl
|
||||
yt = sqrt(r2 - xu**2) - yl
|
||||
|
||||
! calculate the sin(½φ), φ, and sin(φ)
|
||||
!
|
||||
sn = 0.5d+00 * sqrt(dx**2 + (yt - yb)**2) / radius
|
||||
ph = 2.0d+00 * asin(sn)
|
||||
sn = sin(ph)
|
||||
|
||||
! calculate the area of cell intersection with the radius
|
||||
!
|
||||
fc_ovr = 0.5d+00 * ((yt + yb) * dx + (ph - sn) * r2)
|
||||
|
||||
else if (rul >= r2) then
|
||||
|
||||
! two left corners inside the radius
|
||||
!
|
||||
! calculate middle coordinates of the radius-edge crossing point
|
||||
!
|
||||
xb = sqrt(r2 - yl**2) - xl
|
||||
xt = sqrt(r2 - yu**2) - xl
|
||||
|
||||
! calculate the sin(½φ), φ, and sin(φ)
|
||||
!
|
||||
sn = 0.5d+00 * sqrt((xt - xb)**2 + dy**2) / radius
|
||||
ph = 2.0d+00 * asin(sn)
|
||||
sn = sin(ph)
|
||||
|
||||
! calculate the area of cell intersection with the radius
|
||||
!
|
||||
fc_ovr = 0.5d+00 * ((xt + xb) * dy + (ph - sn) * r2)
|
||||
|
||||
else
|
||||
|
||||
! three corners inside the radius
|
||||
!
|
||||
! calculate middle coordinates of the radius-edge crossing point
|
||||
!
|
||||
xt = xu - sqrt(r2 - yu**2)
|
||||
yt = yu - sqrt(r2 - xu**2)
|
||||
|
||||
! calculate the sin(½φ), φ, and sin(φ)
|
||||
!
|
||||
sn = 0.5d+00 * sqrt(xt**2 + yt**2) / radius
|
||||
ph = 2.0d+00 * asin(sn)
|
||||
sn = sin(ph)
|
||||
|
||||
! calculate the area of cell intersection with the radius
|
||||
!
|
||||
fc_ovr = dvol - 0.5d+00 * (xt * yt - (ph - sn) * r2)
|
||||
|
||||
end if
|
||||
#endif /* NDIMS == 3 */
|
||||
|
||||
! normalize coefficients
|
||||
!
|
||||
fc_ovr = fc_ovr / dvol
|
||||
fc_amb = 1.0d+00 - fc_ovr
|
||||
|
||||
! integrate density and pressure over the edge cells
|
||||
!
|
||||
q(idn,i) = fc_ovr * dn_ovr + fc_amb * dn_amb
|
||||
q(ipr,i) = fc_ovr * pr_ovr + fc_amb * pr_amb
|
||||
|
||||
end if
|
||||
|
||||
end do ! i = 1, im
|
||||
|
||||
! convert the primitive variables to conservative ones
|
||||
!
|
||||
call prim2cons(im, q(1:nv,1:im), u(1:nv,1:im))
|
||||
|
||||
! copy the conserved variables to the current block
|
||||
!
|
||||
pdata%u(1:nv,1:im,j,k) = u(1:nv,1:im)
|
||||
|
||||
! copy the primitive variables to the current block
|
||||
!
|
||||
pdata%q(1:nv,1:im,j,k) = q(1:nv,1:im)
|
||||
|
||||
end do ! j = 1, jm
|
||||
end do ! k = 1, km
|
||||
|
||||
#if NDIMS == 3
|
||||
! deallocate subgrid coordinates
|
||||
!
|
||||
deallocate(xm, ym, zm)
|
||||
deallocate(xp, yp, zp)
|
||||
#endif /* NDIMS == 3 */
|
||||
|
||||
#ifdef PROFILE
|
||||
! stop accounting time for the problems setup
|
||||
!
|
||||
call stop_timer(imu)
|
||||
#endif /* PROFILE */
|
||||
|
||||
!-------------------------------------------------------------------------------
|
||||
!
|
||||
end subroutine setup_problem_sedov_taylor
|
||||
!
|
||||
!===============================================================================
|
||||
!
|
||||
! subroutine SETUP_PROBLEM_IMPLOSION:
|
||||
! ----------------------------------
|
||||
!
|
||||
|
Loading…
x
Reference in New Issue
Block a user