amun-code/src/sources.F90

608 lines
18 KiB
Fortran
Raw Normal View History

!!******************************************************************************
!!
!! This file is part of the AMUN source code, a program to perform
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2017 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by
!! the Free Software Foundation, either version 3 of the License, or
!! (at your option) any later version.
!!
!! This program is distributed in the hope that it will be useful,
!! but WITHOUT ANY WARRANTY; without even the implied warranty of
!! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
!! GNU General Public License for more details.
!!
!! You should have received a copy of the GNU General Public License
!! along with this program. If not, see <http://www.gnu.org/licenses/>.
!!
!!******************************************************************************
!!
!! module: SOURCES
!!
!! This modules adds source terms.
!!
!!******************************************************************************
!
module sources
#ifdef PROFILE
! include external procedures
!
use timers, only : set_timer, start_timer, stop_timer
#endif /* PROFILE */
! module variables are not implicit by default
!
implicit none
#ifdef PROFILE
! timer indices
!
integer, save :: imi, imu
#endif /* PROFILE */
! GLM-MHD source terms type (1 - EGLM, 2 - HEGLM)
!
integer , save :: glm_type = 0
! viscosity coefficient
!
real(kind=8), save :: viscosity = 0.0d+00
! resistivity coefficient
!
real(kind=8), save :: resistivity = 0.0d+00
! by default everything is private
!
private
! declare public subroutines
!
public :: initialize_sources, finalize_sources
public :: update_sources
public :: viscosity, resistivity
!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!
contains
!
!===============================================================================
!!
!!*** PUBLIC SUBROUTINES *****************************************************
!!
!===============================================================================
!
!===============================================================================
!
! subroutine INITIALIZE_SOURCES:
! -----------------------------
!
! Subroutine initializes module SOURCES.
!
! Arguments:
!
! verbose - a logical flag turning the information printing;
! iret - an integer flag for error return value;
!
!===============================================================================
!
subroutine initialize_sources(verbose, iret)
! include external procedures and variables
!
use parameters , only : get_parameter_string, get_parameter_real
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
logical, intent(in) :: verbose
integer, intent(inout) :: iret
! local variables
!
character(len=8) :: tglm = "none"
!
!-------------------------------------------------------------------------------
!
#ifdef PROFILE
! set timer descriptions
!
call set_timer('sources:: initialize', imi)
call set_timer('sources:: update' , imu)
! start accounting time for module initialization/finalization
!
call start_timer(imi)
#endif /* PROFILE */
! get the type of the GLM source terms
!
call get_parameter_string("glm_source_terms", tglm)
! set the glm_type variable to correct value
!
select case(trim(tglm))
case("eglm", "EGLM")
glm_type = 1
case("heglm", "HEGLM")
glm_type = 2
case default
glm_type = 0
end select
! get viscosity coefficient
!
call get_parameter_real("viscosity" , viscosity)
! get resistivity coefficient
!
call get_parameter_real("resistivity", resistivity)
! print information about the Riemann solver
!
if (verbose) then
write (*,"(4x,a,1x,a) ") "glm source terms =", trim(tglm)
write (*,"(4x,a,1x,1e9.2)") "viscosity =", viscosity
write (*,"(4x,a,1x,1e9.2)") "resistivity =", resistivity
end if
#ifdef PROFILE
! stop accounting time for module initialization/finalization
!
call stop_timer(imi)
#endif /* PROFILE */
!-------------------------------------------------------------------------------
!
end subroutine initialize_sources
!
!===============================================================================
!
! subroutine FINALIZE_SOURCES:
! ---------------------------
!
! Subroutine releases memory used by the module.
!
! Arguments:
!
! iret - an integer flag for error return value;
!
!===============================================================================
!
subroutine finalize_sources(iret)
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
integer, intent(inout) :: iret
!
!-------------------------------------------------------------------------------
!
#ifdef PROFILE
! start accounting time for module initialization/finalization
!
call start_timer(imi)
#endif /* PROFILE */
#ifdef PROFILE
! stop accounting time for module initialization/finalization
!
call stop_timer(imi)
#endif /* PROFILE */
!-------------------------------------------------------------------------------
!
end subroutine finalize_sources
!
!===============================================================================
!
! subroutine UPDATE_SOURCES:
! -------------------------
!
! Subroutine add the source terms.
!
! Arguments:
!
! q - the array of primitive variables;
! du - the array of variable increment;
!
!===============================================================================
!
subroutine update_sources(pdata, t, dt, du)
! include external variables
!
use blocks , only : block_data
use coordinates , only : im, jm, km
use coordinates , only : ax, ay, az, adx, ady, adz
use equations , only : nv, inx, iny, inz
use equations , only : idn, ivx, ivy, ivz, imx, imy, imz, ien
use equations , only : ibx, iby, ibz, ibp
use gravity , only : gravity_enabled, gravitational_acceleration
use operators , only : divergence, gradient, laplace, curl
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
type(block_data), pointer , intent(inout) :: pdata
real(kind=8) , intent(in) :: t, dt
real(kind=8), dimension(nv,im,jm,km), intent(inout) :: du
! local variables
!
integer :: i , j , k
real(kind=8) :: fc, gc
real(kind=8) :: gx, gy, gz
real(kind=8) :: dbx, dby, dbz
real(kind=8) :: dvxdx, dvxdy, dvxdz, divv
real(kind=8) :: dvydx, dvydy, dvydz
real(kind=8) :: dvzdx, dvzdy, dvzdz
! local arrays
!
real(kind=8), dimension(3) :: ga, dh
real(kind=8), dimension(im) :: x
real(kind=8), dimension(jm) :: y
real(kind=8), dimension(km) :: z
real(kind=8), dimension(im,jm,km) :: db
real(kind=8), dimension(3,3,im,jm,km) :: tmp
!
!-------------------------------------------------------------------------------
!
#ifdef PROFILE
! start accounting time for source terms
!
call start_timer(imu)
#endif /* PROFILE */
! proceed only if the gravitational term is enabled
!
if (gravity_enabled) then
! prepare block coordinates
!
x(1:im) = pdata%meta%xmin + ax(pdata%meta%level,1:im)
y(1:jm) = pdata%meta%ymin + ay(pdata%meta%level,1:jm)
#if NDIMS == 3
z(1:km) = pdata%meta%zmin + az(pdata%meta%level,1:km)
#endif /* NDIMS == 3 */
! iterate over all positions in the YZ plane
!
do k = 1, km
do j = 1, jm
do i = 1, im
! get gravitational acceleration components
!
call gravitational_acceleration(x(i), y(j), z(k), ga(1:3))
! calculate the gravitational source terms
!
gx = pdata%q(idn,i,j,k) * ga(1)
gy = pdata%q(idn,i,j,k) * ga(2)
#if NDIMS == 3
gz = pdata%q(idn,i,j,k) * ga(3)
#endif /* NDIMS == 3 */
! add source terms to momentum equations
!
du(imx,i,j,k) = du(imx,i,j,k) + gx
du(imy,i,j,k) = du(imy,i,j,k) + gy
#if NDIMS == 3
du(imz,i,j,k) = du(imz,i,j,k) + gz
#endif /* NDIMS == 3 */
! add source terms to total energy equation
!
if (ien > 0) then
#if NDIMS == 2
du(ien,i,j,k) = du(ien,i,j,k) + gx * pdata%q(ivx,i,j,k) &
+ gy * pdata%q(ivy,i,j,k)
#endif /* NDIMS == 2 */
#if NDIMS == 3
du(ien,i,j,k) = du(ien,i,j,k) + gx * pdata%q(ivx,i,j,k) &
+ gy * pdata%q(ivy,i,j,k) &
+ gz * pdata%q(ivz,i,j,k)
#endif /* NDIMS == 3 */
end if
end do ! i = 1, im
end do ! j = 1, jm
end do ! k = 1, km
end if ! gravity enabled
! proceed only if the viscosity coefficient is not zero
!
if (viscosity > 0.0d+00) then
! prepare coordinate increments
!
dh(1) = adx(pdata%meta%level)
dh(2) = ady(pdata%meta%level)
dh(3) = adz(pdata%meta%level)
! calculate the velocity Jacobian
!
call gradient(dh(:), pdata%q(ivx,1:im,1:jm,1:km) &
, tmp(inx,inx:inz,1:im,1:jm,1:km))
call gradient(dh(:), pdata%q(ivy,1:im,1:jm,1:km) &
, tmp(iny,inx:inz,1:im,1:jm,1:km))
call gradient(dh(:), pdata%q(ivz,1:im,1:jm,1:km) &
, tmp(inz,inx:inz,1:im,1:jm,1:km))
! iterate over all cells
!
do k = 1, km
do j = 1, jm
do i = 1, im
! prepare the νρ factor
!
gc = viscosity * pdata%q(idn,i,j,k)
fc = 2.0d+00 * gc
! get the velocity Jacobian elements
!
dvxdx = tmp(inx,inx,i,j,k)
dvxdy = tmp(inx,iny,i,j,k)
dvxdz = tmp(inx,inz,i,j,k)
dvydx = tmp(iny,inx,i,j,k)
dvydy = tmp(iny,iny,i,j,k)
dvydz = tmp(iny,inz,i,j,k)
dvzdx = tmp(inz,inx,i,j,k)
dvzdy = tmp(inz,iny,i,j,k)
dvzdz = tmp(inz,inz,i,j,k)
divv = (dvxdx + dvydy + dvzdz) / 3.0d+00
! calculate elements of the viscous stress tensor
!
tmp(inx,inx,i,j,k) = fc * (dvxdx - divv)
tmp(iny,iny,i,j,k) = fc * (dvydy - divv)
tmp(inz,inz,i,j,k) = fc * (dvzdz - divv)
tmp(inx,iny,i,j,k) = gc * (dvxdy + dvydx)
tmp(inx,inz,i,j,k) = gc * (dvxdz + dvzdx)
tmp(iny,inz,i,j,k) = gc * (dvydz + dvzdy)
tmp(iny,inx,i,j,k) = tmp(inx,iny,i,j,k)
tmp(inz,inx,i,j,k) = tmp(inx,inz,i,j,k)
tmp(inz,iny,i,j,k) = tmp(iny,inz,i,j,k)
end do ! i = 1, im
end do ! j = 1, jm
end do ! k = 1, km
! calculate the divergence of the first tensor row
!
call divergence(dh(:), tmp(inx,inx:inz,1:im,1:jm,1:km) &
, db(1:im,1:jm,1:km))
! add viscous source terms to the X momentum equation
!
du(imx,1:im,1:jm,1:km) = du(imx,1:im,1:jm,1:km) + db(1:im,1:jm,1:km)
! calculate the divergence of the second tensor row
!
call divergence(dh(:), tmp(iny,inx:inz,1:im,1:jm,1:km) &
, db(1:im,1:jm,1:km))
! add viscous source terms to the Y momentum equation
!
du(imy,1:im,1:jm,1:km) = du(imy,1:im,1:jm,1:km) + db(1:im,1:jm,1:km)
! calculate the divergence of the third tensor row
!
call divergence(dh(:), tmp(inz,inx:inz,1:im,1:jm,1:km) &
, db(1:im,1:jm,1:km))
! add viscous source terms to the Z momentum equation
!
du(imz,1:im,1:jm,1:km) = du(imz,1:im,1:jm,1:km) + db(1:im,1:jm,1:km)
! add viscous source term to total energy equation
!
if (ien > 0) then
! iterate over all cells
!
do k = 1, km
do j = 1, jm
do i = 1, im
! calculate scalar product of v and viscous stress tensor τ
!
gx = pdata%q(ivx,i,j,k) * tmp(inx,inx,i,j,k) &
+ pdata%q(ivy,i,j,k) * tmp(inx,iny,i,j,k) &
+ pdata%q(ivz,i,j,k) * tmp(inx,inz,i,j,k)
gy = pdata%q(ivx,i,j,k) * tmp(iny,inx,i,j,k) &
+ pdata%q(ivy,i,j,k) * tmp(iny,iny,i,j,k) &
+ pdata%q(ivz,i,j,k) * tmp(iny,inz,i,j,k)
gz = pdata%q(ivx,i,j,k) * tmp(inz,inx,i,j,k) &
+ pdata%q(ivy,i,j,k) * tmp(inz,iny,i,j,k) &
+ pdata%q(ivz,i,j,k) * tmp(inz,inz,i,j,k)
! update (v.τ), use the first row of the tensor tmp
!
tmp(inx,inx,i,j,k) = gx
tmp(inx,iny,i,j,k) = gy
tmp(inx,inz,i,j,k) = gz
end do ! i = 1, im
end do ! j = 1, jm
end do ! k = 1, km
! calculate the divergence of (v.τ)
!
call divergence(dh(:), tmp(inx,inx:inz,1:im,1:jm,1:km) &
, db(1:im,1:jm,1:km))
! update the energy increment
!
du(ien,1:im,1:jm,1:km) = du(ien,1:im,1:jm,1:km) + db(1:im,1:jm,1:km)
end if ! ien > 0
end if ! viscosity is not zero
!=== add magnetic field related source terms ===
!
if (ibx > 0) then
! prepare coordinate increments
!
dh(1) = adx(pdata%meta%level)
dh(2) = ady(pdata%meta%level)
dh(3) = adz(pdata%meta%level)
! add the EGLM-MHD source terms
!
if (glm_type > 0) then
! calculate the magnetic field divergence
!
call divergence(dh(:), pdata%q(ibx:ibz,:,:,:), db(:,:,:))
! update the momentum component increments, i.e.
! d/dt (ρv) + ∇.F = - (∇.B)B
!
du(imx,:,:,:) = du(imx,:,:,:) - db(:,:,:) * pdata%q(ibx,:,:,:)
du(imy,:,:,:) = du(imy,:,:,:) - db(:,:,:) * pdata%q(iby,:,:,:)
du(imz,:,:,:) = du(imz,:,:,:) - db(:,:,:) * pdata%q(ibz,:,:,:)
! update the energy equation
!
if (ien > 0 .and. ibp > 0) then
! calculate the gradient of divergence potential
!
call gradient(dh(:), pdata%q(ibp,:,:,:), tmp(inx:inz,inx,:,:,:))
! add the divergence potential source term to the energy equation, i.e.
! d/dt E + ∇.F = - B.(∇ψ)
!
du(ien,:,:,:) = du(ien,:,:,:) &
- sum(pdata%q(ibx:ibz,:,:,:) * tmp(inx:inz,inx,:,:,:), 1)
end if ! ien > 0
! add the HEGLM-MHD source terms
!
if (glm_type > 1) then
! update magnetic field component increments, i.e.
! d/dt B + ∇.F = - (∇.B)v
!
du(ibx,:,:,:) = du(ibx,:,:,:) - db(:,:,:) * pdata%q(ivx,:,:,:)
du(iby,:,:,:) = du(iby,:,:,:) - db(:,:,:) * pdata%q(ivy,:,:,:)
du(ibz,:,:,:) = du(ibz,:,:,:) - db(:,:,:) * pdata%q(ivz,:,:,:)
! update the energy equation
!
if (ien > 0) then
! calculate scalar product of velocity and magnetic field
!
tmp(inx,inx,:,:,:) = sum(pdata%q(ivx:ivz,:,:,:) &
* pdata%q(ibx:ibz,:,:,:), 1)
! add the divergence potential source term to the energy equation, i.e.
! d/dt E + ∇.F = - (∇.B) (v.B)
!
du(ien,:,:,:) = du(ien,:,:,:) - db(:,:,:) * tmp(inx,inx,:,:,:)
end if ! ien > 0
end if ! glm_type > 1
end if ! glmtype > 0
! proceed only if the resistivity coefficient is not zero
!
if (resistivity > 0.0d+00) then
! calculate the Laplace operator of B, i.e. Δ(B)
!
call laplace(dh(:), pdata%q(ibx,1:im,1:jm,1:km) &
, tmp(inx,inx,1:im,1:jm,1:km))
call laplace(dh(:), pdata%q(iby,1:im,1:jm,1:km) &
, tmp(inx,iny,1:im,1:jm,1:km))
call laplace(dh(:), pdata%q(ibz,1:im,1:jm,1:km) &
, tmp(inx,inz,1:im,1:jm,1:km))
! multiply by the resistivity coefficient
!
tmp(iny,inx:inz,1:im,1:jm,1:km) = &
resistivity * tmp(inx,inx:inz,1:im,1:jm,1:km)
! update magnetic field component increments
!
du(ibx,1:im,1:jm,1:km) = du(ibx,1:im,1:jm,1:km) &
+ tmp(iny,inx,1:im,1:jm,1:km)
du(iby,1:im,1:jm,1:km) = du(iby,1:im,1:jm,1:km) &
+ tmp(iny,iny,1:im,1:jm,1:km)
du(ibz,1:im,1:jm,1:km) = du(ibz,1:im,1:jm,1:km) &
+ tmp(iny,inz,1:im,1:jm,1:km)
! update energy equation
!
if (ien > 0) then
! add the first resistive source term to the energy equation, i.e.
! d/dt E + ∇.F = η B.[Δ(B)]
!
du(ien,1:im,1:jm,1:km) = du(ien,1:im,1:jm,1:km) &
+ (pdata%q(ibx,1:im,1:jm,1:km) * tmp(iny,inx,1:im,1:jm,1:km) &
+ pdata%q(iby,1:im,1:jm,1:km) * tmp(iny,iny,1:im,1:jm,1:km) &
+ pdata%q(ibz,1:im,1:jm,1:km) * tmp(iny,inz,1:im,1:jm,1:km))
! calculate current density J = ∇xB
!
call curl(dh(:), pdata%q(ibx:ibz,1:im,1:jm,1:km) &
, tmp(inz,inx:inz,1:im,1:jm,1:km))
! add the second resistive source term to the energy equation, i.e.
! d/dt E + ∇.F = η J²
!
du(ien,1:im,1:jm,1:km) = du(ien,1:im,1:jm,1:km) &
+ resistivity * sum(tmp(inz,inx:inz,1:im,1:jm,1:km)**2, 2)
end if ! energy equation present
end if ! resistivity is not zero
end if ! ibx > 0
#ifdef PROFILE
! stop accounting time for source terms
!
call stop_timer(imu)
#endif /* PROFILE */
!-------------------------------------------------------------------------------
!
end subroutine update_sources
!===============================================================================
!
end module sources