amun-code/src/evolution.F90

694 lines
17 KiB
Fortran
Raw Normal View History

!!******************************************************************************
!!
!! This file is part of the AMUN source code, a program to perform
!! Newtonian or relativistic magnetohydrodynamical simulations on uniform or
!! adaptive mesh.
!!
!! Copyright (C) 2008-2013 Grzegorz Kowal <grzegorz@amuncode.org>
!!
!! This program is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by
!! the Free Software Foundation, either version 3 of the License, or
!! (at your option) any later version.
!!
!! This program is distributed in the hope that it will be useful,
!! but WITHOUT ANY WARRANTY; without even the implied warranty of
!! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
!! GNU General Public License for more details.
!!
!! You should have received a copy of the GNU General Public License
!! along with this program. If not, see <http://www.gnu.org/licenses/>.
!!
!!******************************************************************************
!!
!! module: EVOLUTION
!!
!! This module provides an interface for temporal integration with
!! the stability handling. New integration methods can be added by
!! implementing more evolve_* subroutines.
!!
!!******************************************************************************
!
module evolution
! module variables are not implicit by default
!
implicit none
! pointer to the temporal integration subroutine
!
procedure(evolve_euler), pointer, save :: evolve => null()
! evolution parameters
!
real , save :: cfl = 0.5d+0
! time variables
!
integer, save :: n = 0
real , save :: t = 0.0d+0
real , save :: dt = 1.0d+0
real , save :: dtn = 1.0d+0
! by default everything is private
!
private
! declare public subroutines
!
public :: initialize_evolution, finalize_evolution
public :: advance
! declare public variables
!
public :: cfl, n, t, dt, dtn
!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!
contains
!
!===============================================================================
!!
!!*** PUBLIC SUBROUTINES *****************************************************
!!
!===============================================================================
!
!===============================================================================
!
! subroutine INITIALIZE_EVOLUTION:
! -------------------------------
!
! Subroutine initializes module EVOLUTION by setting its parameters.
!
! Arguments:
!
! verbose - a logical flag turning the information printing;
! iret - an integer flag for error return value;
!
!===============================================================================
!
subroutine initialize_evolution(verbose, iret)
! include external procedures
!
use parameters, only : get_parameter_string, get_parameter_real
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
logical, intent(in) :: verbose
integer, intent(inout) :: iret
! local variables
!
character(len=255) :: integration = "rk2"
character(len=255) :: name_int = ""
!
!-------------------------------------------------------------------------------
!
! get the integration method and the value of the CFL coefficient
!
call get_parameter_string("time_advance", integration)
call get_parameter_real ("cfl" , cfl )
! select the integration method, check the correctness of the integration
! parameters and adjust the CFL coefficient if necessary
!
select case(trim(integration))
case ("euler", "EULER")
name_int = "1st order Euler method"
evolve => evolve_euler
case ("rk2", "RK2")
name_int = "2nd order Runge-Kutta method"
evolve => evolve_rk2
case default
if (verbose) then
write (*,"(1x,a)") "The selected time advance method is not " // &
"implemented: " // trim(integration)
name_int = "2nd order Runge-Kutta method"
evolve => evolve_rk2
end if
end select
! ! calculate the initial time step
! !
! call new_time_step()
! print information about the Riemann solver
!
if (verbose) then
write (*,"(4x,a,1x,a)" ) "time advance =", trim(name_int)
end if
!-------------------------------------------------------------------------------
!
end subroutine initialize_evolution
!
!===============================================================================
!
! subroutine FINALIZE_EVOLUTION:
! -----------------------------
!
! Subroutine releases memory used by the module.
!
! Arguments:
!
! iret - an integer flag for error return value;
!
!===============================================================================
!
subroutine finalize_evolution(iret)
! local variables are not implicit by default
!
implicit none
! subroutine arguments
!
integer, intent(inout) :: iret
!
!-------------------------------------------------------------------------------
!
!-------------------------------------------------------------------------------
!
end subroutine finalize_evolution
!
!===============================================================================
!
! subroutine ADVANCE:
! ------------------
!
! Subroutine advances the solution by one time step using the selected time
! integration method.
!
!
!===============================================================================
!
subroutine advance()
! include external procedures
!
use boundaries , only : boundary_variables
use mesh , only : update_mesh
! include external variables
!
use coordinates , only : toplev
! local variables are not implicit by default
!
implicit none
!
!-------------------------------------------------------------------------------
!
! find new time step
!
call new_time_step()
! advance the solution using the selected method
!
call evolve()
! chec if we need to perform the refinement step
!
if (toplev > 1) then
! check refinement and refine
!
call update_mesh()
! update boundaries
!
call boundary_variables()
end if ! toplev > 1
! update primitive variables
!
call update_variables()
!-------------------------------------------------------------------------------
!
end subroutine advance
!
!===============================================================================
!!
!!*** PRIVATE SUBROUTINES ****************************************************
!!
!===============================================================================
!
!===============================================================================
!
! subroutine EVOLVE_EULER:
! -----------------------
!
! Subroutine advances the solution by one time step using the 1st order
! Euler integration method.
!
!===============================================================================
!
subroutine evolve_euler()
! include external procedures
!
use boundaries , only : boundary_variables
use schemes , only : update_increment
! include external variables
!
use blocks , only : block_data, list_data
use coordinates , only : adx, ady, adz
use coordinates , only : im, jm, km
use equations , only : nv
! local variables are not implicit by default
!
implicit none
! local pointers
!
type(block_data), pointer :: pblock
! local arrays
!
real, dimension(3) :: dh
real, dimension(nv,im,jm,km) :: du
!
!-------------------------------------------------------------------------------
!
! update fluxes for the first step of the RK2 integration
!
call update_fluxes()
! update the solution using numerical fluxes stored in the data blocks
!
pblock => list_data
do while (associated(pblock))
! obtain dx, dy, and dz for the current block
!
dh(1) = dt / adx(pblock%meta%level)
dh(2) = dt / ady(pblock%meta%level)
dh(3) = dt / adz(pblock%meta%level)
! calculate variable increment for the current block
!
call update_increment(dh(:), pblock%f(:,:,:,:,:), du(:,:,:,:))
! update the solution for the fluid variables
!
pblock%u0(1:nv,:,:,:) = pblock%u0(1:nv,:,:,:) + du(1:nv,:,:,:)
! update the conservative variable pointer
!
pblock%u => pblock%u1
! assign pointer to the next block
!
pblock => pblock%next
end do
! update boundaries
!
call boundary_variables()
! update primitive variables
!
call update_variables()
!-------------------------------------------------------------------------------
!
end subroutine evolve_euler
!
!===============================================================================
!
! subroutine EVOLVE_RK2:
! ---------------------
!
! Subroutine advances the solution by one time step using the 2nd order
! Runge-Kutta time integration method.
!
!
!===============================================================================
!
subroutine evolve_rk2()
! include external procedures
!
use boundaries , only : boundary_variables
use schemes , only : update_increment
! include external variables
!
use blocks , only : block_data, list_data
use coordinates , only : adx, ady, adz
use coordinates , only : im, jm, km
use equations , only : nv
! local variables are not implicit by default
!
implicit none
! local pointers
!
type(block_data), pointer :: pblock
! local arrays
!
real, dimension(3) :: dh
real, dimension(nv,im,jm,km) :: du
!
!-------------------------------------------------------------------------------
!
! update fluxes for the first step of the RK2 integration
!
call update_fluxes()
! update the solution using numerical fluxes stored in the data blocks
!
pblock => list_data
do while (associated(pblock))
! obtain dx, dy, and dz for the current block
!
dh(1) = dt / adx(pblock%meta%level)
dh(2) = dt / ady(pblock%meta%level)
dh(3) = dt / adz(pblock%meta%level)
! calculate variable increment for the current block
!
call update_increment(dh(:), pblock%f(:,:,:,:,:), du(:,:,:,:))
! update the solution for the fluid variables
!
pblock%u1(1:nv,:,:,:) = pblock%u0(1:nv,:,:,:) + du(1:nv,:,:,:)
! update the conservative variable pointer
!
pblock%u => pblock%u1
! assign pointer to the next block
!
pblock => pblock%next
end do
! update boundaries
!
call boundary_variables()
! update primitive variables
!
call update_variables()
! update fluxes for the second step of the RK2 integration
!
call update_fluxes()
! update the solution using numerical fluxes stored in the data blocks
!
pblock => list_data
do while (associated(pblock))
! obtain dx, dy, and dz for the current block
!
dh(1) = dt / adx(pblock%meta%level)
dh(2) = dt / ady(pblock%meta%level)
dh(3) = dt / adz(pblock%meta%level)
! calculate variable increment for the current block
!
call update_increment(dh(:), pblock%f(:,:,:,:,:), du(:,:,:,:))
! update the solution for the fluid variables
!
pblock%u0(1:nv,:,:,:) = 0.5d0 * (pblock%u0(1:nv,:,:,:) &
+ pblock%u1(1:nv,:,:,:) + du(1:nv,:,:,:))
! update the conservative variable pointer
!
pblock%u => pblock%u0
! assign pointer to the next block
!
pblock => pblock%next
end do
! update boundaries
!
call boundary_variables()
! update primitive variables
!
call update_variables()
!-------------------------------------------------------------------------------
!
end subroutine evolve_rk2
!
!===============================================================================
!
! subroutine UPDATE_FLUXES:
! ------------------------
!
! Subroutine iterates over all data blocks and calculates the numerical
! fluxes for each block. After the fluxes are updated, they are corrected
! for blocks which have neighbours at higher refinement level.
!
!
!===============================================================================
!
subroutine update_fluxes()
! include external procedures
!
use boundaries , only : boundary_fluxes
use schemes , only : update_flux
! include external variables
!
use blocks , only : block_data, list_data
use coordinates , only : adx, ady, adz
! local variables are not implicit by default
!
implicit none
! local pointers
!
type(block_data), pointer :: pblock
! local vectors
!
real, dimension(3) :: dx
! local variables
!
integer :: n
!
!-------------------------------------------------------------------------------
!
! iterate over all data blocks
!
pblock => list_data
do while (associated(pblock))
! obtain dx, dy, and dz for the current block
!
dx(1) = adx(pblock%meta%level)
dx(2) = ady(pblock%meta%level)
dx(3) = adz(pblock%meta%level)
! update the flux for the current block
!
do n = 1, NDIMS
call update_flux(n, dx(n), pblock%q(:,:,:,:), pblock%f(n,:,:,:,:))
end do
! assign pointer to the next block
!
pblock => pblock%next
end do
! correct the numerical fluxes of the blocks which have neighbours at higher
! level
!
call boundary_fluxes()
!-------------------------------------------------------------------------------
!
end subroutine update_fluxes
!
!===============================================================================
!
! subroutine UPDATE_VARIABLES:
! ---------------------------
!
! Subroutine iterates over all data blocks and converts the conservative
! variables to their primitive representation.
!
!
!===============================================================================
!
subroutine update_variables()
! include external procedures
!
use equations , only : update_primitive_variables
! include external variables
!
use blocks , only : block_data, list_data
! local variables are not implicit by default
!
implicit none
! local pointers
!
type(block_data), pointer :: pblock
!
!-------------------------------------------------------------------------------
!
! iterate over all data blocks
!
pblock => list_data
do while (associated(pblock))
! convert conserved variables to primitive ones for the current block
!
call update_primitive_variables(pblock%u, pblock%q)
! assign pointer to the next block
!
pblock => pblock%next
end do
!-------------------------------------------------------------------------------
!
end subroutine update_variables
!
!===============================================================================
!
! subroutine NEW_TIME_STEP:
! ------------------------
!
! Subroutine estimates the new time step from the maximum speed in the system
! and source term constraints.
!
!
!===============================================================================
!
subroutine new_time_step()
! include external procedures
!
use equations , only : maxspeed, cmax, cmax2
#ifdef MPI
use mpitools , only : reduce_maximum_real, reduce_maximum_integer
#endif /* MPI */
! include external variables
!
use blocks , only : block_data, list_data
use coordinates , only : adx, ady, adz
use coordinates , only : toplev
! local variables are not implicit by default
!
implicit none
! local pointers
!
type(block_data), pointer :: pblock
! local variables
!
integer :: iret
integer(kind=4) :: lev
real :: cm, dx_min
! local parameters
!
real, parameter :: eps = tiny(cmax)
!
!-------------------------------------------------------------------------------
!
! reset the maximum speed, and the highest level
!
cmax = eps
lev = 1
! iterate over all data blocks in order to find the maximum speed among them
! and the highest level which is required to obtain the spatial step
!
pblock => list_data
do while (associated(pblock))
! find the maximum level occupied by blocks (can be smaller than toplev)
!
lev = max(lev, pblock%meta%level)
! obtain the maximum speed for the current block
!
cm = maxspeed(pblock%q(:,:,:,:))
! compare global and local maximum speeds
!
cmax = max(cmax, cm)
! assiociate the pointer with the next block
!
pblock => pblock%next
end do
#ifdef MPI
! find maximum speed in the system from all processors
!
call reduce_maximum_real (cmax, iret)
call reduce_maximum_integer(lev , iret)
#endif /* MPI */
! calculate squared cmax
!
cmax2 = cmax * cmax
! find the smallest spatial step
!
#if NDIMS == 2
dx_min = min(adx(lev), ady(lev))
#endif /* NDIMS == 2 */
#if NDIMS == 3
dx_min = min(adx(lev), ady(lev), adz(lev))
#endif /* NDIMS == 3 */
! calcilate the new time step
!
dtn = dx_min / max(cmax, eps)
!-------------------------------------------------------------------------------
!
end subroutine new_time_step
!===============================================================================
!
end module evolution