amun-code/src/mesh.F90

1352 lines
35 KiB
Fortran
Raw Normal View History

!!******************************************************************************
!!
!! module: mesh - handling adaptive mesh structure
!!
2011-02-27 22:45:54 -03:00
!! Copyright (C) 2008-2011 Grzegorz Kowal <grzegorz@gkowal.info>
!!
!!******************************************************************************
!!
!! This file is part of AMUN.
!!
!! AMUN is free software; you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by
!! the Free Software Foundation; either version 3 of the License, or
!! (at your option) any later version.
!!
!! AMUN is distributed in the hope that it will be useful,
!! but WITHOUT ANY WARRANTY; without even the implied warranty of
!! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
!! GNU General Public License for more details.
!!
!! You should have received a copy of the GNU General Public License
!! along with this program. If not, see <http://www.gnu.org/licenses/>.
!!
!!******************************************************************************
!!
!
module mesh
implicit none
! minimum grid step
!
real, save :: dx_min = 1.0
! spatial coordinates for all levels of refinements
!
real, dimension(:,:), allocatable, save :: ax , ay , az
real, dimension(: ), allocatable, save :: adx , ady , adz
real, dimension(: ), allocatable, save :: adxi, adyi, adzi
real, dimension(: ), allocatable, save :: advol
contains
!
!===============================================================================
!
! init_mesh: subroutine initializes mesh by creating blocks according
! to the geometry, initial problem and refinement criterium
!
!===============================================================================
!
2011-02-27 13:49:26 -03:00
subroutine init_mesh()
use config , only : maxlev, rdims
2011-04-14 00:19:45 +02:00
use blocks , only : block_meta, block_data, list_meta, list_data
use blocks , only : refine_block, deallocate_datablock
use blocks , only : mblocks, nleafs, dblocks, nchild, nsides, nfaces
use error , only : print_info, print_error
use mpitools, only : is_master, ncpu, ncpus
use problem , only : init_domain, init_problem, check_ref
implicit none
! local pointers
!
type(block_meta), pointer :: pmeta_block, pneigh, pnext
type(block_data), pointer :: pdata_block
! local variables
!
integer(kind=4) :: i, j, k, l, n
character(len=64) :: fmt
character(len=32) :: bstr, tstr
#ifdef MPI
integer(kind=4), dimension(0:ncpus-1) :: lb
#endif /* MPI */
!-------------------------------------------------------------------------------
!
! allocate the initial structure of blocks according to the problem
!
call init_domain()
! at this point we assume, that the initial structure of blocks
! according to the defined geometry is already created; no refinement
! is done yet; we fill out the coarse blocks with the initial condition
!
if (is_master()) then
write(*,*)
write(*,"(1x,a)" ) "Generating the initial mesh:"
write(*,"(4x,a,$)") "generating level = "
end if
l = 1
do while (l .le. maxlev)
! print the level currently processed
!
if (is_master()) &
write(*,"(1x,i2,$)") l
! iterate over all data blocks at the current level and initialize the problem
!
pdata_block => list_data
do while (associated(pdata_block))
! set the initial conditions at the current block
!
if (pdata_block%meta%level .le. l) &
call init_problem(pdata_block)
! assign pointer to the next block
!
pdata_block => pdata_block%next
end do
! at the maximum level we only initialize the problem (without checking the
! refinement criterion)
!
if (l .lt. maxlev) then
! iterate over all data blocks at the current level and check the refinement
! criterion; do not allow for derefinement
!
pdata_block => list_data
do while (associated(pdata_block))
if (pdata_block%meta%level .eq. l) then
pdata_block%meta%refine = max(0, check_ref(pdata_block))
! if there is only one block, and it is set not to be refined, refine it anyway
! because the resolution for the problem initiation may be too small
!
if (mblocks .eq. 1 .and. l .eq. 1) &
pdata_block%meta%refine = 1
end if
! assign pointer to the next block
!
pdata_block => pdata_block%next
end do
! walk through all levels down from the current level and check if select all
! neighbors for the refinement if they are at lower level; there is no need for
! checking the blocks at the lowest level;
!
do n = l, 2, -1
! iterate over all meta blocks at the level n and if the current block is
! selected for the refinement and its neighbors are at lower levels select them
! for refinement too;
!
pmeta_block => list_meta
do while (associated(pmeta_block))
! check if the current block is at the level n, is a leaf, and selected for
! refinement
!
if (pmeta_block%level .eq. n) then
if (pmeta_block%leaf) then
if (pmeta_block%refine .eq. 1) then
! iterate over all neighbors
!
do i = 1, NDIMS
do j = 1, nsides
do k = 1, nfaces
! assign pointer to the neighbor
!
pneigh => pmeta_block%neigh(i,j,k)%ptr
! check if the neighbor is associated
!
if (associated(pneigh)) then
! check if the neighbor is a leaf, if not something wrong is going on
!
if (pneigh%leaf) then
! if the neighbor has lower level, select it to be refined too
!
if (pneigh%level .lt. pmeta_block%level) &
pneigh%refine = 1
else
call print_error("mesh::init_mesh", "Neighbor is not a leaf!")
end if
end if
end do
end do
end do
end if
end if
end if
! assign pointer to the next block
!
pmeta_block => pmeta_block%next
end do
end do
!! refine all selected blocks starting from the lowest level
!!
! walk through the levels starting from the lowest to the current level
!
do n = 1, l
! iterate over all meta blocks
!
pmeta_block => list_meta
do while (associated(pmeta_block))
! check if the current block is at the level n and, if it is selected for
! refinement and if so, perform the refinement on this block
!
if (pmeta_block%level .eq. n .and. pmeta_block%refine .eq. 1) then
! perform the refinement
!
call refine_block(pmeta_block, .true.)
end if
! assign pointer to the next block
!
pmeta_block => pmeta_block%next
end do
end do
end if
l = l + 1
end do
! deallocate data blocks of non leafs
!
pmeta_block => list_meta
do while (associated(pmeta_block))
if (.not. pmeta_block%leaf) &
call deallocate_datablock(pmeta_block%data)
! assign pointer to the next block
!
pmeta_block => pmeta_block%next
end do
#ifdef MPI
! divide blocks between all processes, use the number of data blocks to do this,
! but keep blocks from the top level which have the same parent packed together
!
l = mod(nleafs, ncpus) - 1
lb( : ) = nleafs / ncpus
lb(0:l) = lb(0:l) + 1
! reset the processor and block numbers
n = 0
l = 0
pmeta_block => list_meta
do while (associated(pmeta_block))
! assign the cpu to the current block
!
pmeta_block%cpu = n
! increase the number of blocks on the current process; if it exceeds the
! allowed number reset the counter and increase the processor number
!
if (pmeta_block%leaf) then
l = l + 1
if (l .ge. lb(n)) then
n = min(ncpus - 1, n + 1)
l = 0
end if
end if
! assign pointer to the next block
!
pmeta_block => pmeta_block%next
end do
! remove all data blocks which do not belong to the current process
!
pmeta_block => list_meta
do while (associated(pmeta_block))
pnext => pmeta_block%next
! if the current block belongs to another process and its data field is
! associated, deallocate its data field
!
if (pmeta_block%cpu .ne. ncpu .and. associated(pmeta_block%data)) &
call deallocate_datablock(pmeta_block%data)
! assign pointer to the next block
!
pmeta_block => pnext
end do
#endif /* MPI */
! print information about the generated geometry
!
if (is_master()) then
n = 0
do l = 0, maxlev - 1
k = 2**(NDIMS * l)
n = n + k
end do
n = n * rdims(1) * rdims(2) * rdims(3)
k = k * rdims(1) * rdims(2) * rdims(3)
i = nint(alog10(1.0*mblocks + 1)) + 1
j = nint(alog10(1.0*n + 1)) + 1
write(fmt, "(a,i1,a,i1,a)") "(4x,a,1x,i", i, ",' / ',i", j, ",' = ',f8.4,' %')"
write(*,*)
write(*,fmt) "leafs /cover blocks =", nleafs , k, (100.0 * nleafs ) / k
write(*,fmt) "allocated/total blocks =", mblocks, n, (100.0 * mblocks) / n
write(*,*)
end if
!-------------------------------------------------------------------------------
!
end subroutine init_mesh
!
!===============================================================================
!
! init_coords: subroutine initializes coordinate variables
!
!===============================================================================
!
subroutine init_coords()
use blocks , only : res
use config , only : maxlev, im, jm, km, ncells, rdims, ng &
, xmin, xmax, ymin, ymax, zmin, zmax
use mpitools, only : is_master
implicit none
! local variables
!
integer(kind=4) :: i, j, k, l, n
!-------------------------------------------------------------------------------
!
! allocating space for coordinate variables
!
allocate(ax (maxlev, im))
allocate(ay (maxlev, jm))
allocate(az (maxlev, km))
allocate(adx (maxlev))
allocate(ady (maxlev))
allocate(adz (maxlev))
allocate(adxi (maxlev))
allocate(adyi (maxlev))
allocate(adzi (maxlev))
allocate(advol(maxlev))
! reset the coordinate variables
!
ax(:,:) = 0.0d0
ay(:,:) = 0.0d0
az(:,:) = 0.0d0
adx(:) = 1.0d0
ady(:) = 1.0d0
adz(:) = 1.0d0
adxi(:) = 1.0d0
adyi(:) = 1.0d0
adzi(:) = 1.0d0
advol(:) = 1.0d0
! generating coordinates for all levels
!
do l = 1, maxlev
n = ncells * 2**(l - 1)
adx (l) = (xmax - xmin) / (rdims(1) * n)
ady (l) = (ymax - ymin) / (rdims(2) * n)
#if NDIMS == 3
adz (l) = (zmax - zmin) / (rdims(3) * n)
#endif /* NDIMS == 3 */
ax(l,:) = ((/(i, i = 1, im)/) - ng - 0.5d0) * adx(l)
ay(l,:) = ((/(j, j = 1, jm)/) - ng - 0.5d0) * ady(l)
#if NDIMS == 3
az(l,:) = ((/(k, k = 1, km)/) - ng - 0.5d0) * adz(l)
#endif /* NDIMS == 3 */
adxi(l) = 1.0d0 / adx(l)
adyi(l) = 1.0d0 / ady(l)
#if NDIMS == 3
adzi(l) = 1.0d0 / adz(l)
#endif /* NDIMS == 3 */
advol(l) = adx(l) * ady(l) * adz(l)
end do
! get the minimum grid step
!
dx_min = 0.5 * min(adx(maxlev), ady(maxlev), adz(maxlev))
! print general information about resolutions
!
if (is_master()) then
write(*,*)
write(*,"(1x,a)" ) "Geometry:"
write(*,"(4x,a,3(1x,i6))") "base configuration =", rdims(1:NDIMS)
write(*,"(4x,a,3(1x,i6))") "base resolution =" &
, rdims(1:NDIMS) * ncells
write(*,"(4x,a,3(1x,i6))") "effective resolution =" &
, rdims(1:NDIMS) * res(1)
write(*,"(4x,a, 1x,i6)" ) "refinement to level =", maxlev
end if
!-------------------------------------------------------------------------------
!
end subroutine init_coords
!
!===============================================================================
!
! update_mesh: subroutine check the refinement criterion for each block,
! refines or derefines it if necessary, and restricts or
! prolongates all data to the newly created blocks
!
!===============================================================================
!
2011-02-27 13:49:26 -03:00
subroutine update_mesh()
use config , only : maxlev, im, jm, km
use blocks , only : block_meta, block_data, list_meta, list_data &
, nleafs, dblocks, nchild, ndims, nsides, nfaces &
, refine_block, derefine_block, append_datablock &
, associate_blocks, deallocate_datablock
use error , only : print_info, print_error
#ifdef MPI
use mpitools , only : ncpus, ncpu, is_master, mallreducesuml, msendf, mrecvf
#endif /* MPI */
use problem , only : check_ref
use variables, only : nqt
implicit none
! local variables
!
logical :: flag
integer(kind=4) :: i, j, k, l, n, p
#ifdef MPI
2011-04-23 17:29:20 -03:00
! tag for the MPI data exchange
!
2011-04-23 17:29:20 -03:00
integer(kind=4) :: itag
2011-04-23 17:29:20 -03:00
! array for storing the refinement flags
!
2011-04-23 17:29:20 -03:00
integer(kind=4), dimension(:), allocatable :: ibuf
! array for number of data block for autobalancing
!
2011-04-23 17:29:20 -03:00
integer(kind=4), dimension(0:ncpus-1) :: lb
! local buffer for data block exchange
!
2011-04-23 17:29:20 -03:00
real(kind=8) , dimension(nqt,im,jm,km) :: rbuf
#endif /* MPI */
! local pointers
!
type(block_meta), pointer :: pmeta, pneigh, pchild, pparent
type(block_data), pointer :: pdata
!-------------------------------------------------------------------------------
!
#ifdef DEBUG
! check mesh
!
call check_mesh('before update_mesh')
#endif /* DEBUG */
2011-04-23 17:29:20 -03:00
! iterate over elements of the data block list
!
pdata => list_data
do while (associated(pdata))
2011-04-23 17:29:20 -03:00
! assign a pointer to the meta block associated with the current data block
!
pmeta => pdata%meta
2011-04-23 17:29:20 -03:00
! if the current data block has a meta block associated
!
if (associated(pmeta)) then
! if the associated meta block is a leaf
!
if (pmeta%leaf) then
2011-04-23 17:29:20 -03:00
! check the refinement criterion for the current data block
!
pmeta%refine = check_ref(pdata)
2011-04-23 17:29:20 -03:00
! correct the refinement of the block for the base and top levels
!
if (pmeta%level .eq. 1) pmeta%refine = max(0, pmeta%refine)
if (pmeta%level .eq. maxlev) pmeta%refine = min(0, pmeta%refine)
end if ! pmeta is a leaf
end if ! pmeta associated
2011-04-23 17:29:20 -03:00
! assign a pointer to the next data block
!
pdata => pdata%next
2011-04-23 17:29:20 -03:00
end do
#ifdef MPI
2011-04-23 17:29:20 -03:00
! allocate buffer for the refinement field values
!
allocate(ibuf(nleafs))
! reset the buffer
!
ibuf(:) = 0
! store refinement flags for all blocks for exchange between processors
!
l = 1
pmeta => list_meta
do while (associated(pmeta))
if (pmeta%leaf) then
ibuf(l) = pmeta%refine
2011-04-23 17:29:20 -03:00
l = l + 1
end if
pmeta => pmeta%next
end do
2011-04-23 17:29:20 -03:00
! update refinement flags across all processors
!
2011-04-23 17:29:20 -03:00
call mallreducesuml(nleafs, ibuf(1:nleafs))
! update non-local block refinement flags
!
l = 1
pmeta => list_meta
do while (associated(pmeta))
if (pmeta%leaf) then
2011-04-23 17:29:20 -03:00
pmeta%refine = ibuf(l)
l = l + 1
end if
pmeta => pmeta%next
end do
2011-04-23 17:29:20 -03:00
! deallocate the buffer
!
if (allocated(ibuf)) deallocate(ibuf)
#endif /* MPI */
! iterate over all levels starting from top and correct the refinement of blocks
!
do l = maxlev, 1, -1
2011-04-23 17:29:20 -03:00
! iterate over all meta blocks
!
pmeta => list_meta
do while (associated(pmeta))
2011-04-23 17:29:20 -03:00
! check only leafs at the current level
!
if (pmeta%leaf .and. pmeta%level .eq. l) then
2011-04-23 17:29:20 -03:00
! iterte over all neighbors of the current leaf
!
do i = 1, ndims
do j = 1, nsides
do k = 1, nfaces
2011-04-23 17:29:20 -03:00
! assign a pointer to the current neighbor
!
pneigh => pmeta%neigh(i,j,k)%ptr
2011-04-23 17:29:20 -03:00
! check if the pointer is associated with any block
!
if (associated(pneigh)) then
2011-04-23 17:29:20 -03:00
!= conditions for blocks which are selected to be refined
!
if (pmeta%refine .eq. 1) then
2011-04-23 17:29:20 -03:00
! if the neighbor is set to be derefined, reset its flags (this applies to
! blocks at the current and lower levels)
!
2011-04-23 17:29:20 -03:00
pneigh%refine = max(0, pneigh%refine)
2011-04-23 17:29:20 -03:00
! if the neighbor is at lower level, always set it to be refined
!
if (pneigh%level .lt. pmeta%level) pneigh%refine = 1
end if ! refine = 1
!= conditions for blocks which stay at the same level
!
if (pmeta%refine .eq. 0) then
! if the neighbor lays at lower level and is set to be derefined, cancel its
! derefinement
!
if (pneigh%level .lt. pmeta%level) &
pneigh%refine = max(0, pneigh%refine)
2011-04-23 17:29:20 -03:00
end if ! refine = 0
!= conditions for blocks which are selected to be derefined
!
if (pmeta%refine .eq. -1) then
! if the neighbor is at lower level and is set to be derefined, cancel its
! derefinement
!
if (pneigh%level .lt. pmeta%level) &
pneigh%refine = max(0, pneigh%refine)
2011-04-23 17:29:20 -03:00
! if the neighbor is set to be refined, cancel derefinement of the current block
!
if (pneigh%refine .eq. 1) pmeta%refine = 0
end if ! refine = -1
end if ! associated(pneigh)
2011-04-23 17:29:20 -03:00
end do
end do
end do
2011-04-23 17:29:20 -03:00
end if ! leafs at level l
! assign a pointer to the next block
!
pmeta => pmeta%next
2011-04-23 17:29:20 -03:00
end do ! meta blocks
!= now check all derefined block if their siblings are set for derefinement too
! and are at the same level; check ony levels >= 2
!
2011-04-23 17:29:20 -03:00
if (l .ge. 2) then
2011-04-23 17:29:20 -03:00
! iterate over all blocks
!
pmeta => list_meta
do while (associated(pmeta))
2011-04-23 17:29:20 -03:00
! check only leafs at the current level
!
if (pmeta%leaf .and. pmeta%level .eq. l) then
2011-04-23 17:29:20 -03:00
! check blocks which are selected to be derefined
!
if (pmeta%refine .eq. -1) then
2011-04-23 17:29:20 -03:00
! assign a pointer to the parent of the current block
!
pparent => pmeta%parent
2011-04-23 17:29:20 -03:00
! check if parent is associated with any block
!
if (associated(pparent)) then
2011-04-23 17:29:20 -03:00
! reset derefinement flag
!
flag = .true.
2011-04-23 17:29:20 -03:00
! iterate over all children
!
do p = 1, nchild
2011-04-23 17:29:20 -03:00
! assign a pointer to the current child
!
pchild => pparent%child(p)%ptr
! check if the current child is a leaf
!
flag = flag .and. (pchild%leaf)
! check if the current child is set to be derefined
!
flag = flag .and. (pchild%refine .eq. -1)
end do ! over all children
! if not all children are proper for derefinement, cancel derefinement of all
! children
!
if (.not. flag) then
! iterate over all children
!
do p = 1, nchild
! assign a pointer to the current child
!
pchild => pparent%child(p)%ptr
! reset derefinement of the current child
!
pchild%refine = max(0, pchild%refine)
end do ! children
end if ! ~flag
end if ! pparent is associated
end if ! refine = -1
end if ! leafs at level l
! assign a pointer to the next block
!
pmeta => pmeta%next
end do ! meta blocks
end if ! l >= 2
end do ! levels
#ifdef MPI
! find all sibling blocks which are spread over different processors
!
pmeta => list_meta
do while (associated(pmeta))
if (.not. pmeta%leaf) then
if (pmeta%child(1)%ptr%refine .eq. -1) then
! check if the parent blocks is on the same processor as the next block, if not
! move it to the same processor
!
if (pmeta%cpu .ne. pmeta%next%cpu) &
pmeta%cpu = pmeta%next%cpu
! find the case when child blocks are spread across at least 2 processors
!
flag = .false.
do p = 1, nchild
flag = flag .or. (pmeta%child(p)%ptr%cpu .ne. pmeta%cpu)
end do
if (flag) then
! iterate over all children
!
do p = 1, nchild
! generate the tag for communication
!
itag = pmeta%child(p)%ptr%cpu * ncpus + pmeta%cpu + ncpus + p + 1
! if the current children is not on the same processor, then ...
!
if (pmeta%child(p)%ptr%cpu .ne. pmeta%cpu) then
! allocate data blocks for children on the processor which will receive data
!
if (pmeta%cpu .eq. ncpu) then
call append_datablock(pdata)
call associate_blocks(pmeta%child(p)%ptr, pdata)
! receive the data
!
call mrecvf(size(rbuf), pmeta%child(p)%ptr%cpu, itag, rbuf)
! coppy buffer to data
!
pmeta%child(p)%ptr%data%u(:,:,:,:) = rbuf(:,:,:,:)
end if
! send data to the right processor and deallocate data block
!
if (pmeta%child(p)%ptr%cpu .eq. ncpu) then
! copy data to buffer
!
rbuf(:,:,:,:) = pmeta%child(p)%ptr%data%u(:,:,:,:)
! send data
!
call msendf(size(rbuf), pmeta%cpu, itag, rbuf)
! deallocate data block
!
call deallocate_datablock(pmeta%child(p)%ptr%data)
end if
! set the current processor of the block
!
pmeta%child(p)%ptr%cpu = pmeta%cpu
end if
end do
end if
end if
end if
pmeta => pmeta%next
end do
#endif /* MPI */
! perform the actual derefinement
!
do l = maxlev, 2, -1
pmeta => list_meta
do while (associated(pmeta))
if (pmeta%leaf) then
if (pmeta%level .eq. l) then
if (pmeta%refine .eq. -1) then
pparent => pmeta%parent
if (associated(pparent)) then
#ifdef MPI
if (pmeta%cpu .eq. ncpu) then
#endif /* MPI */
if (.not. associated(pparent%data)) then
call append_datablock(pdata)
call associate_blocks(pparent, pdata)
end if
call restrict_block(pparent)
#ifdef MPI
end if
#endif /* MPI */
call derefine_block(pparent)
pmeta => pparent
else
call print_error("mesh::update_mesh" &
, "Parent of derefined block is not associated!")
end if
end if
end if
end if
pmeta => pmeta%next
end do
end do
! perform the actual refinement
!
do l = 1, maxlev - 1
pmeta => list_meta
do while (associated(pmeta))
if (pmeta%leaf) then
if (pmeta%level .eq. l) then
if (pmeta%refine .eq. 1) then
pparent => pmeta
#ifdef MPI
if (pmeta%cpu .eq. ncpu) then
#endif /* MPI */
call refine_block(pmeta, .true.)
call prolong_block(pparent)
call deallocate_datablock(pparent%data)
#ifdef MPI
else
call refine_block(pmeta, .false.)
end if
#endif /* MPI */
end if
end if
end if
pmeta => pmeta%next
end do
end do
#ifdef MPI
!! AUTO BALANCING
!!
! calculate the new division
!
l = mod(nleafs, ncpus) - 1
lb( : ) = nleafs / ncpus
lb(0:l) = lb(0:l) + 1
! iterate over all metablocks and reassign the processor numbers
!
n = 0
l = 0
pmeta => list_meta
do while (associated(pmeta))
! assign the cpu to the current block
!
if (pmeta%cpu .ne. n) then
if (pmeta%leaf) then
! generate the tag for communication
!
itag = pmeta%cpu * ncpus + n + ncpus + 1
if (ncpu .eq. pmeta%cpu) then
! copy data to buffer
!
rbuf(:,:,:,:) = pmeta%data%u(:,:,:,:)
! send data
!
call msendf(size(rbuf), n, itag, rbuf)
! deallocate data block
!
call deallocate_datablock(pmeta%data)
! send data block
!
end if
if (ncpu .eq. n) then
! allocate data block for the current block
!
call append_datablock(pdata)
call associate_blocks(pmeta, pdata)
! receive the data
!
call mrecvf(size(rbuf), pmeta%cpu, itag, rbuf)
! coppy buffer to data
!
pmeta%data%u(:,:,:,:) = rbuf(:,:,:,:)
! receive data block
!
end if
end if
! set new processor number
!
pmeta%cpu = n
end if
! increase the number of blocks on the current process; if it exceeds the
! allowed number reset the counter and increase the processor number
!
if (pmeta%leaf) then
l = l + 1
if (l .ge. lb(n)) then
n = min(ncpus - 1, n + 1)
l = 0
end if
end if
! assign pointer to the next block
!
pmeta => pmeta%next
end do
#endif /* MPI */
#ifdef DEBUG
! check mesh
!
call check_mesh('after update_mesh')
#endif /* DEBUG */
!-------------------------------------------------------------------------------
!
end subroutine update_mesh
!
!===============================================================================
!
! prolong_block: subroutine expands the block data and copy them to children
!
!===============================================================================
!
subroutine prolong_block(pblock)
use blocks , only : block_meta, block_data, nchild
use config , only : ng, nh, in, jn, kn, im, jm, km
use interpolation, only : expand
use variables , only : nfl, nqt
#ifdef MHD
use variables , only : ibx, iby, ibz
#ifdef GLM
use variables , only : iph
#endif /* GLM */
#endif /* MHD */
implicit none
! input arguments
!
type(block_meta), pointer, intent(inout) :: pblock
! local variables
!
integer :: q, p
integer :: il, iu, jl, ju, kl, ku
integer :: is, js, ks
! local arrays
!
integer, dimension(3) :: dm, fm
! local allocatable arrays
!
real, dimension(:,:,:,:), allocatable :: u
! local pointers
!
type(block_meta), pointer :: pchild
type(block_data), pointer :: pdata
!-------------------------------------------------------------------------------
!
! assign the pdata pointer
!
pdata => pblock%data
! prepare dimensions
!
dm(:) = (/ im, jm, km /)
fm(:) = 2 * (dm(:) - ng)
#if NDIMS == 2
fm(3) = 1
ks = 1
kl = 1
ku = 1
#endif /* NDIMS == 2 */
! allocate array to the product of expansion
!
allocate(u(nqt, fm(1), fm(2), fm(3)))
! expand all variables and place them in the array u
!
do q = 1, nfl
call expand(dm(:), fm(:), nh, pdata%u(q,:,:,:), u(q,:,:,:))
end do
#ifdef MHD
! expand the cell centered magnetic field components
!
do q = ibx, ibz
call expand(dm(:), fm(:), nh, pdata%u(q,:,:,:), u(q,:,:,:))
end do
#ifdef GLM
! expand the scalar potential Psi
!
call expand(dm(:), fm(:), nh, pdata%u(iph,:,:,:), u(iph,:,:,:))
#endif /* GLM */
#endif /* MHD */
! iterate over all children
!
do p = 1, nchild
! assign pointer to the current child
!
pchild => pblock%child(p)%ptr
! obtain the position of child in the parent block
!
is = pchild%pos(1)
js = pchild%pos(2)
#if NDIMS == 3
ks = pchild%pos(3)
#endif /* NDIMS == 3 */
! calculate indices of the current child subdomain
!
il = 1 + is * in
jl = 1 + js * jn
#if NDIMS == 3
kl = 1 + ks * kn
#endif /* NDIMS == 3 */
iu = il + im - 1
ju = jl + jm - 1
#if NDIMS == 3
ku = kl + km - 1
#endif /* NDIMS == 3 */
! copy data to the current child
!
pchild%data%u(1:nqt,1:im,1:jm,1:km) = u(1:nqt,il:iu,jl:ju,kl:ku)
end do
! deallocate local arrays
!
if (allocated(u)) deallocate(u)
!-------------------------------------------------------------------------------
!
end subroutine prolong_block
!
!===============================================================================
!
! restrict_block: subroutine shrinks the block data and copy them from children
!
!===============================================================================
!
subroutine restrict_block(pblock)
use blocks , only : block_meta, block_data, nchild
use config , only : ng, in, ih, im, ib, ie, nh, jn, jh, jm, jb, je &
, kn, kh, km, kb, ke
use variables , only : nfl
#ifdef MHD
use variables , only : ibx, iby, ibz
#ifdef GLM
use variables , only : iph
#endif /* GLM */
#endif /* MHD */
implicit none
! input arguments
!
type(block_meta), pointer, intent(inout) :: pblock
! local variables
!
integer :: p
integer :: if, jf, kf
integer :: il, jl, kl, iu, ju, ku
integer :: ip, jp, kp
integer :: is, js, ks, it, jt, kt
! local pointers
!
type(block_data), pointer :: pparent, pchild
!-------------------------------------------------------------------------------
!
! assign pointers
!
pparent => pblock%data
! iterate over all children
!
do p = 1, nchild
! assign pointer to the current child
!
pchild => pblock%child(p)%ptr%data
! obtain the position of the current child in the parent block
!
if = pchild%meta%pos(1)
jf = pchild%meta%pos(2)
#if NDIMS == 3
kf = pchild%meta%pos(3)
#endif /* NDIMS == 3 */
! calculate the bound indices of the source nad destination arrays
!
if (if .eq. 0) then
il = 1
iu = ie
is = ib - nh
it = ih
else
il = ib
iu = im
is = ih + 1
it = ie + nh
end if
ip = il + 1
if (jf .eq. 0) then
jl = 1
ju = je
js = jb - nh
jt = jh
else
jl = jb
ju = jm
js = jh + 1
jt = je + nh
end if
jp = jl + 1
#if NDIMS == 3
if (kf .eq. 0) then
kl = 1
ku = ke
ks = kb - nh
kt = kh
else
kl = kb
ku = km
ks = kh + 1
kt = ke + nh
end if
kp = kl + 1
#endif /* NDIMS == 3 */
! copy the variables from the current child to the proper location of
! the parent block
!
#if NDIMS == 2
pparent%u(1:nfl,is:it,js:jt,1) = &
0.25 * (pchild%u(1:nfl,il:iu:2,jl:ju:2,1) &
+ pchild%u(1:nfl,ip:iu:2,jl:ju:2,1) &
+ pchild%u(1:nfl,il:iu:2,jp:ju:2,1) &
+ pchild%u(1:nfl,ip:iu:2,jp:ju:2,1))
#ifdef MHD
pparent%u(ibx:ibz,is:it,js:jt,1) = &
0.25 * (pchild%u(ibx:ibz,il:iu:2,jl:ju:2,1) &
+ pchild%u(ibx:ibz,ip:iu:2,jl:ju:2,1) &
+ pchild%u(ibx:ibz,il:iu:2,jp:ju:2,1) &
+ pchild%u(ibx:ibz,ip:iu:2,jp:ju:2,1))
#ifdef GLM
pparent%u(iph ,is:it,js:jt,1) = &
0.25 * (pchild%u(iph ,il:iu:2,jl:ju:2,1) &
+ pchild%u(iph ,ip:iu:2,jl:ju:2,1) &
+ pchild%u(iph ,il:iu:2,jp:ju:2,1) &
+ pchild%u(iph ,ip:iu:2,jp:ju:2,1))
#endif /* GLM */
#endif /* MHD */
#endif /* NDIMS == 2 */
#if NDIMS == 3
pparent%u(1:nfl,is:it,js:jt,ks:kt) = &
0.125 * (pchild%u(1:nfl,il:iu:2,jl:ju:2,kl:ku:2) &
+ pchild%u(1:nfl,ip:iu:2,jl:ju:2,kl:ku:2) &
+ pchild%u(1:nfl,il:iu:2,jp:ju:2,kl:ku:2) &
+ pchild%u(1:nfl,ip:iu:2,jp:ju:2,kl:ku:2) &
+ pchild%u(1:nfl,il:iu:2,jl:ju:2,kp:ku:2) &
+ pchild%u(1:nfl,ip:iu:2,jl:ju:2,kp:ku:2) &
+ pchild%u(1:nfl,il:iu:2,jp:ju:2,kp:ku:2) &
+ pchild%u(1:nfl,ip:iu:2,jp:ju:2,kp:ku:2))
#ifdef MHD
pparent%u(ibx:ibz,is:it,js:jt,ks:kt) = &
0.125 * (pchild%u(ibx:ibz,il:iu:2,jl:ju:2,kl:ku:2) &
+ pchild%u(ibx:ibz,ip:iu:2,jl:ju:2,kl:ku:2) &
+ pchild%u(ibx:ibz,il:iu:2,jp:ju:2,kl:ku:2) &
+ pchild%u(ibx:ibz,ip:iu:2,jp:ju:2,kl:ku:2) &
+ pchild%u(ibx:ibz,il:iu:2,jl:ju:2,kp:ku:2) &
+ pchild%u(ibx:ibz,ip:iu:2,jl:ju:2,kp:ku:2) &
+ pchild%u(ibx:ibz,il:iu:2,jp:ju:2,kp:ku:2) &
+ pchild%u(ibx:ibz,ip:iu:2,jp:ju:2,kp:ku:2))
#ifdef GLM
pparent%u(iph ,is:it,js:jt,ks:kt) = &
0.125 * (pchild%u(iph ,il:iu:2,jl:ju:2,kl:ku:2) &
+ pchild%u(iph ,ip:iu:2,jl:ju:2,kl:ku:2) &
+ pchild%u(iph ,il:iu:2,jp:ju:2,kl:ku:2) &
+ pchild%u(iph ,ip:iu:2,jp:ju:2,kl:ku:2) &
+ pchild%u(iph ,il:iu:2,jl:ju:2,kp:ku:2) &
+ pchild%u(iph ,ip:iu:2,jl:ju:2,kp:ku:2) &
+ pchild%u(iph ,il:iu:2,jp:ju:2,kp:ku:2) &
+ pchild%u(iph ,ip:iu:2,jp:ju:2,kp:ku:2))
#endif /* GLM */
#endif /* MHD */
#endif /* NDIMS == 3 */
end do
!
!-------------------------------------------------------------------------------
!
end subroutine restrict_block
!
!===============================================================================
!
! clears_mesh: subroutine deallocates mesh, removing blocks
!
!===============================================================================
!
2011-02-27 13:49:26 -03:00
subroutine clear_mesh()
use blocks, only : clear_blocks
use error , only : print_info
implicit none
!-------------------------------------------------------------------------------
!
! deallocate block structure
!
call clear_blocks
! deallocating coordinate variables
!
if (allocated(ax) ) deallocate(ax)
if (allocated(ay) ) deallocate(ay)
if (allocated(az) ) deallocate(az)
if (allocated(adx) ) deallocate(adx)
if (allocated(ady) ) deallocate(ady)
if (allocated(adz) ) deallocate(adz)
if (allocated(adxi) ) deallocate(adxi)
if (allocated(adyi) ) deallocate(adyi)
if (allocated(adzi) ) deallocate(adzi)
if (allocated(advol)) deallocate(advol)
!-------------------------------------------------------------------------------
!
end subroutine clear_mesh
#ifdef DEBUG
!
!===============================================================================
!
! check_mesh: subroutine checks if the block structure is correct
!
!===============================================================================
!
subroutine check_mesh(string)
use blocks, only : block_meta, list_meta
use blocks, only : last_id, nchild, ndims, nsides, nfaces
use blocks, only : check_metablock
implicit none
! input arguments
!
character(len=*), intent(in) :: string
! local pointers
!
type(block_meta), pointer :: pmeta
!-------------------------------------------------------------------------------
!
! check meta blocks
!
pmeta => list_meta
do while(associated(pmeta))
! check the current block
!
call check_metablock(pmeta, string)
pmeta => pmeta%next
end do
!-------------------------------------------------------------------------------
!
end subroutine check_mesh
#endif /* DEBUG */
!===============================================================================
!
end module